K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2019

Từ giả thiết ta có: \(\left(x+y-z\right)^2=4xy\)

\(\Rightarrow P=x+y+z+\frac{2}{\left(x+y-z\right)^2.z}=x+y+z+\frac{8}{4z\left(x+y-z\right)^2}\)

Am-Gm:\(\left(x+y-z\right)\left(x+y-z\right).4z\le\frac{1}{27}\left(2x+2y+2z\right)^3=\frac{8}{27}\left(x+y+z\right)^3\)

\(\Rightarrow P\ge x+y+z+\frac{27}{\left(x+y+z\right)^3}\)

\(=\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{x+y+z}{3}+\frac{27}{\left(x+y+z\right)^3}\ge4\sqrt[4]{\frac{\left(x+y+z\right)^3.27}{27.\left(x+y+z\right)^3}}=4\)

Dấu = xảy ra khi \(\left\{{}\begin{matrix}x+y-z=4z\\x+y+z=3\\\left(x+y-z\right)^2=4xy\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}z=\frac{1}{2}\\x+y=\frac{5}{2}\\xy=1\end{matrix}\right.\)

\(\Rightarrow\left(x;y;z\right)=\left(\frac{1}{2};2;\frac{1}{2}\right)\) hoặc \(\left(2;\frac{1}{2};\frac{1}{2}\right)\). Nhưng vì đề bài cho đối xứng với cả 3 biến nên dấu = xảy ra tại hoán vị của \(\left(2;\frac{1}{2};\frac{1}{2}\right)\)

Vậy P min =4

30 tháng 11 2019

Ngọc HnueThảo PhươngĐỖ CHÍ DŨNGMinh AnBăng Băng 2k6Vũ Minh Tuấn

2 tháng 1 2018

Cộng hai vế phương trình lại ta có :

\(x+y-2z+z\left(x+y\right)=2\)

\(\Leftrightarrow\left(x+y\right)\left(z+1\right)-2\left(z+1\right)=0\Leftrightarrow\left(x+y-2\right)\left(z+1\right)=0\)

\(\Rightarrow x+y=2\) ( vì z dương nên không thể bằng -1 )

Ta có :

\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=2\)

Vậy Min T = 2 khi x = y = 1

mình thấy kết quả này hình như ko đúng cho lắm

28 tháng 10 2018

Không biết thêm ĐK \(x^2+y^2+z^2=8\) vào làm gì =,=!

Áp dụng BĐT \(\left|a\right|+\left|b\right|+\left| c\right|\ge\left|a+b+c\right|\) (bạn tự chứng minh)

Ta có: \(\left|x\right|+\left|y\right|+\left|z\right|\ge\left|x+y+z\right|=0\)

Dấu = xảy ra khi x = y = z = 0

29 tháng 10 2018

ko có bđt \(\left|a\right|+\left|b\right|+\left|c\right|\ge\left|a+b+c\right|\) nhé tth

Nếu có thì dấu "=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}ab\ge0\left(1\right)\\\left(a+b\right)c\ge0\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a\ge0\\b\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a\le0\\b\le0\end{matrix}\right.\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a+b\ge0\\c\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}a+b\le0\\c\le0\end{matrix}\right.\)

chỉ có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)\(\left|a\right|-\left|b\right|\le\left|a-b\right|\) thui nhé

hok tốt :>

16 tháng 10 2019

Giải toán trên mạng

  • Câu hỏi của s2 Lắc Lư s2
  • Mới nhất
  • TẠO CÂU HỎI MỚI
s2 Lắc Lư s2 Trả lời 2 Đánh dấu

25 tháng 11 2015 lúc 21:27

GPT ngiệm nguyên x2+y2+z2=2xyz

o l m . v n

Toán lớp 9 Hoàng Anh Tú 25 tháng 11 2015 lúc 21:44
Báo cáo sai phạm

Vậy phương trình chỉ có nghiệm tầm thường (0;0;0)

Đúng 1 Sai 1 s2 Lắc Lư s2 đã chọn câu trả lời này. Link kiss_rain_and_you 25 tháng 11 2015 lúc 22:03
Báo cáo sai phạm

vì 2xyz chẵn => X^2+y^2+z^2 chẵn

2TH

TH1: giả sử x chẵn,y,z đều lẻ thì

x=2a,y=2b+1,z=2c+1

thay vào phương trình đã cho thì được VT lẻ , VP chẵn nên mẫu thuẫn

TH2: 3 số đều chẵn

x=2a,y=2b,z=2c

=> 4(a^2+b^2+c^2)=16abc

=> a^2+b^2+c^2=4abc

cứ như thế,pt lùi vô hạn, nghiệm bằng 0

x=y=z=0

Đúng 6 Sai 0 Link

Gợi ý cho bạn

16 tháng 10 2019

pt lùi vô hạn vì sao nghiệm = 0