K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

ĐỊT MẸ

NV
14 tháng 2 2020

Đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\)

BĐT cần chứng minh: \(\frac{a+b}{c^2}+\frac{b+c}{a^2}+\frac{c+a}{b^2}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(VT=a\left(\frac{1}{b^2}+\frac{1}{c^2}\right)+b\left(\frac{1}{a^2}+\frac{1}{c^2}\right)+c\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)

Mà: \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{a}{bc}+\frac{b}{ac}\ge\frac{2}{c}\) ; \(\frac{c}{ab}+\frac{b}{ac}\ge\frac{2}{a}\)

\(\Rightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow VT\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2019

Lời giải:

Ta thấy:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\)

\(\geq \frac{3}{4}(x+y)^2\) với mọi $x,y>0$
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}}{2}(y+z); \sqrt{z^2+zx+x^2}\geq \frac{\sqrt{3}}{2}(x+z)\)

Cộng theo vế các BĐT trên và rút gọn:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

23 tháng 5 2020

Với x, y, z dương, ta cần chứng minh: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\sqrt{3}\left(x+y+z\right)\)(1)

Phân tích: Trong BĐT (1), các biến được hoán vị vòng quanh và đẳng thức xảy ra khi x = y = z. Ta chọn được các số n, m để có bất đẳng thức \(\sqrt{x^2+xy+y^2}\ge nx+my\)(2)

Tương tự rồi cộng theo vế, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\left(m+n\right)\left(x+y+z\right)\)

Nhìn vào BĐT cần chứng minh ta thấy nếu tìm được cặp (n,m) thì lời giải thành công. Thế \(m=\sqrt{3}-n\)vào (2), ta có:

\(\sqrt{x^2+xy+y^2}\ge nx+\left(\sqrt{3}-n\right)y\)\(\Leftrightarrow\sqrt{\left(\frac{x}{y}\right)^2+\left(\frac{x}{y}\right)+1}\ge n.\left(\frac{x}{y}\right)+\left(\sqrt{3}-n\right)\)(3)

Đặt \(t=\frac{x}{y}\)BĐT (3) trở thành \(\sqrt{t^2+t+1}\ge nt+\sqrt{3}-n\)(4)

Do đẳng thức xảy ra khi x = y nên t = 1 ta phân tích (4) về nhân tử (t - 1)

Ta có: \(\left(4\right)\Leftrightarrow\left(\sqrt{t^2+t+1}-\sqrt{3}\right)-n\left(t-1\right)\ge0\)\(\Leftrightarrow\left(t-1\right)\left[\frac{t+2}{\sqrt{t^2+1+1}+\sqrt{3}}-n\right]\ge0\)

\(\Leftrightarrow n\le\frac{t+2}{\sqrt{t^2+t+1}+\sqrt{3}}\). Đồng nhất t = 1, ta được: \(n=\frac{\sqrt{3}}{2}\Rightarrow m=\frac{\sqrt{3}}{2}\)

Lúc đó ta có BĐT phụ: \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)

Giải: Xét BĐT phụ \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(x-y\right)^2\ge0\)*đúng*

Tương tự cho các BĐT còn lại, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)

\(\ge\frac{\sqrt{3}\left(x+y+z\right)+\sqrt{3}\left(x+y+z\right)}{2}=\sqrt{3}\left(x+y+z\right)\)

Đẳng thức xảy ra khi x = y = z.

23 tháng 5 2020

Thật ra bài này không cần giãi kĩ như mình đây, bước đầu là bước nháp của mình, ghi luôn để các bạn hiểu tại sao lại có BĐT phụ thế kia

Nhưng bạn có thể làm 1 cách dễ hơn mà ko cần phải bỏ nhiều công sức nháp

Có: \(\sqrt{x^2+xy+y^2}=\sqrt{\left(x+y\right)^2-xy}\)

\(\ge\sqrt{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}}=\frac{\sqrt{3}\left(x+y\right)}{2}\)

Đến đây tương tự rồi cộng lại, Done.

8 tháng 4 2021

a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)

\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)

\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)

\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)

\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)

\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).

Dấu bằng xảy ra\(\Leftrightarrow x=y\).

Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).

8 tháng 4 2021

Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)

Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)

Lúc đó:

\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)

\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)

Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)

Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)

\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)

\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)

\(\Leftrightarrow A=B\)

Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)

\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)

Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)

\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)

Dấu bằng xảy ra \(\Leftrightarrow x=y\)

Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:

\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)

\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)

Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)

Chứng minh tương tự, ta được:

\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)

Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)

\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)

Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)

Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:

\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)

\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)

\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)

\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)

Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\((x^2+y+z)(1+y+z)\geq (x+y+z)^2\Rightarrow x^2+y+z\geq \frac{(x+y+z)^2}{1+y+z}\)

\(\Rightarrow \sqrt{\frac{x^2}{x^2+y+z}}\leq \sqrt{\frac{x^2(1+y+z)}{(x+y+z)^2}}=\frac{x\sqrt{1+y+z}}{x+y+z}\)

Thực hiện tương tự với các phân thức còn lại và cộng theo vế:

\(\Rightarrow A\leq \frac{x\sqrt{1+y+z}+y\sqrt{1+x+z}+z\sqrt{x+y+1}}{x+y+z}\)

Áp dụng BĐT Cauchy-Schwarz:

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)(xy+xz+x+yx+yz+y+zx+zy+z)\)

\((x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z)[2(xy+yz+xz)+x+y+z]\) (1)

Theo BĐT AM-GM:
\((x+y+z)^2\geq 3(xy+yz+xz)=(x^2+y^2+z^2)(xy+yz+xz)\geq (xy+yz+xz)^2\)

\(\Rightarrow x+y+z\geq xy+yz+xz\) (2)

Từ \((1),(2)\Rightarrow (x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1})^2\leq (x+y+z).3(x+y+z)=3(x+y+z)^2\)

\(\Leftrightarrow x\sqrt{y+z+1}+y\sqrt{x+z+1}+z\sqrt{x+y+1}\leq \sqrt{3}(x+y+z)\)

\(\Rightarrow A\leq \frac{\sqrt{3}(x+y+z)}{x+y+z}=\sqrt{3}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=1\)

13 tháng 7 2020

\(x^2+y^2+z^2\)

\(=\frac{x^2+y^2}{2}+\frac{y^2+z^2}{2}+\frac{z^2+x^2}{2}\)

\(\ge xy+yz+zx\)

\(=\frac{xy+yz}{2}+\frac{yz+zx}{2}+\frac{zx+xy}{2}\)

\(\ge\frac{2\sqrt{xy^2z}}{2}+\frac{2\sqrt{xyz^2}}{2}+\frac{2\sqrt{x^2yz}}{2}\)

\(=\sqrt{xyz}\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

28 tháng 9 2017

BĐT cần chứng minh tương đương

\(VT\ge4\left(x+y+z\right)\)

\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)

Theo BĐT Cauchy-Schwarz và AM-GM, ta có:

\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)

Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)

Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)

\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)

@Phương An

NV
14 tháng 5 2020

\(VT=\sum\sqrt{\frac{1}{2}\left(x^2+2xy+y^2\right)+\frac{1}{2}\left(x^2+y^2\right)}\)

\(VT\ge\sum\sqrt{\frac{1}{2}\left(x+y\right)^2+\frac{1}{4}\left(x+y\right)^2}=\sqrt{\frac{3}{4}\left(x+y\right)^2}\)

\(VT\ge\frac{\sqrt{3}}{2}\left(x+y\right)+\frac{\sqrt{3}}{2}\left(y+z\right)+\frac{\sqrt{3}}{2}\left(z+x\right)=\sqrt{3}\left(x+y+z\right)\)

Dấu "=" xảy ra khi \(x=y=z\)