\(x^3=3x-1, y^3=3y-1,z^3=3z-1\)

CMR

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

nhầm đề không?

(tớ thấy lạ nên hỏi vậy thôi chứ không chắc là làm được)

27 tháng 2 2018

ko nhầm đề đâu

bạn cố gắng nghĩ hộ mình nha eoeo

21 tháng 10 2019

Liên tục áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) và ta có:

\(\frac{1}{3x+3y+2x}=\frac{1}{2\left(x+y\right)+\left(x+y+2z\right)}\le\frac{1}{4}\left(\frac{1}{2\left(x+y\right)}+\frac{1}{\left(x+z\right)+\left(y+z\right)}\right)\le\frac{1}{8\left(x+y\right)}+\frac{1}{16}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

Chứng minh tương tự tạ có:

\(\frac{1}{3x+2y+3z}\le\frac{1}{8\left(z+x\right)}+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)

\(\frac{1}{2x+3y+3z}\le\frac{1}{8\left(y+z\right)}+\frac{1}{16}\left(\frac{1}{z+x}+\frac{1}{x+y}\right)\)

Suy ra \(VT\le\frac{1}{8}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)+\frac{1}{8}\left(\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{4}\)

21 tháng 10 2019

mơn ạ

26 tháng 10 2017

CM cái j v đề thiếu rồi

10 tháng 11 2017

Ta có :

\(\dfrac{1}{3x+3y+2z}=\dfrac{1}{\left(2x+y+z\right)+\left(2y+x+z\right)}\)(1)

Áp dụng BĐT \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(\Rightarrow\left(1\right)\le\dfrac{1}{4}\left(\dfrac{1}{x+y+x+z}+\dfrac{1}{y+x+y+z}\right)\le\dfrac{1}{4}\left(\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{x+y}+\dfrac{1}{y+z}\right)\right)\)

\(=\dfrac{1}{16}\left(\dfrac{2}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)\)

tương tự với hai ông còn lại sau đó cộng lại ta được:

\(\Sigma\dfrac{1}{3x+3y+2z}\le\dfrac{24}{16}=\dfrac{3}{2}\)

26 tháng 10 2016

Ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=6\ge\frac{9}{2\left(x+y+z\right)}\)\(\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có: \(\frac{1}{2x+3y+3z}=\frac{\left(\frac{3}{4}+\frac{1}{4}\right)^2}{2\left(x+y+z\right)+y+z}\le\frac{9}{32\left(x+y+z\right)}+\frac{1}{16\left(y+z\right)}\)

Do đó:

\(\frac{1}{2x+3y+3z}+\frac{1}{2y+3x+3z}+\frac{1}{2z+3x+3y}\)

\(\le\frac{9}{32\left(x+y+z\right)}\cdot3+\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\le\frac{9}{32\cdot\frac{3}{4}}+\frac{1}{16}\cdot6=\frac{3}{2}\)(Đpcm)

1 tháng 2 2018

Tại sao \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}=6\ge\frac{9}{2\left(x+y+z\right)}\)

27 tháng 1 2018

xét hiệu là ra bạn ạ

25 tháng 9 2016

a/ \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=\left(xy-\frac{1}{xy}\right)^2+4\ge4\)

Suy ra Min M = 4 . Dấu "=" xảy ra khi x=y=1/2

b/ Đề đúng phải là \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{3}{2}\)

Ta có \(6=\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2\left(x+y+z\right)}\Rightarrow x+y+z\ge\frac{3}{4}\)

Lại có \(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\ge\frac{9}{8\left(x+y+z\right)}\ge\frac{9}{8.\frac{3}{4}}=\frac{3}{2}\)

13 tháng 7 2017

đề đúng , giải sai kìa ...

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{x+z}+\frac{1}{y+z}\geq \frac{16}{3x+3y+2z}\)

\(\frac{1}{x+z}+\frac{1}{x+z}+\frac{1}{x+y}+\frac{1}{y+z}\geq \frac{16}{3x+2y+3z}\)

\(\frac{1}{z+y}+\frac{1}{z+y}+\frac{1}{x+z}+\frac{1}{x+y}\geq \frac{16}{2x+3y+3z}\)

Cộng theo vế:

\(\Rightarrow 4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\geq 16\left(\frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\right)\)

\(\Rightarrow \frac{1}{3x+3y+2z}+\frac{1}{3x+2y+3z}+\frac{1}{2x+3y+3z}\leq \frac{4.6}{16}=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

14 tháng 2 2018

bé hơn 1

15 tháng 2 2018

Áp dụng công thức : \(x^3+y^3\ge x^2y+xy^2\) ( tự c/m bổ đề này nhé !! )

Ta có : \(\dfrac{1}{1+x^3+y^3}\le\dfrac{xyz}{xyz+x^2y+xy^2}=\dfrac{xyz}{xy\left(z+x+y\right)}=\dfrac{z}{x+y+z}\)(1)

C/m tương tự ta được :\(\dfrac{1}{1+y^3+z^3}\le\dfrac{x}{x+y+z}\)(2)

\(\dfrac{1}{1+z^3+x^3}\le\dfrac{y}{x+y+z}\)(3)

Cộng từng vế của (1) (2)(3) => ĐPCM.