\(\frac{1+x^2}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

JBMO 2003 :3

10 tháng 7 2017

Dễ thấy:\(y\le\frac{y^2+1}{2}\Rightarrow\frac{1+x^2}{1+y+z^2}\ge\frac{1+x^2}{1+z^2+\frac{1+y^2}{2}}\)

Tương tự cho các BĐT còn lại nhé :v

Đặt \(a=1+x^2;b=1+y^2;c=1+z^2\) thì cần cm

\(A=\frac{a}{2c+b}+\frac{b}{2a+c}+\frac{c}{2b+a}\ge1\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(A=\frac{a^2}{2ac+ab}+\frac{b^2}{2ab+bc}+\frac{c^2}{2bc+ac}\)

\(\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

11 tháng 10 2020

Áp dụng bất đẳng thức AM - GM, ta được: \(2yz+2=x^2+\left(y^2+2yz+z^2\right)=x^2+\left(y+z\right)^2\ge2\sqrt{x^2.\left(y+z\right)^2}=2x\left(y+z\right)\Rightarrow yz+1\ge x\left(y+z\right)\)\(\Rightarrow VT\le\frac{x^2}{x^2+x+x\left(y+z\right)}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}=\frac{x+y+z}{x+y+z+1}+\frac{1}{xyz+3}\)

  • Nếu \(x+y+z\le2\)thì \(VT\le1-\frac{1}{x+y+z+1}+\frac{1}{xyz+3}\le1-\frac{1}{3}+\frac{1}{3}=1\)
  • Nếu \(x+y+z\ge2\), ta đặt x + y + z = p; xy + yz + zx = q; xyz = r thì áp dụng bất đẳng thức Schur, ta được \(VT\le\frac{p}{p+1}+\frac{1}{\frac{p\left(4q-p^2\right)}{9}+3}=\frac{p}{p+1}+\frac{9}{p^3-4p+27}\)

Khảo sát hàm trên với \(p\in\left[\sqrt{2};2\right]\)ta cũng có \(VT\le1\)

Vậy ta có: \(\frac{x^2}{x^2+yz+x+1}+\frac{y+z}{x+y+z+1}+\frac{1}{xyz+3}\le1\)

Đẳng thức xảy ra khi x = y = 1; z = 0

11 tháng 10 2020

bài này x,y,z pk không âm

AH
Akai Haruma
Giáo viên
25 tháng 5 2019

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


23 tháng 2 2017

Xét: \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\)

Thay thế \(x+y+z=1\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}+\frac{\left(x+y+z\right)^2-y^2}{y\left(x+y+z\right)+xz}+\frac{\left(x+y+z\right)^2-z^2}{z\left(x+y+z\right)+xy}\)

Áp dụng hằng đẳng thức hiệu 2 bình phương: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{x^2+xy+xz+yz}+\frac{\left(x+z\right)\left(x+2y+z\right)}{xy+y^2+yz+xz}+\frac{\left(x+y\right)\left(x+y+2z\right)}{xz+zy+z^2+xy}\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}+\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\left(x+y\right)\left(x+z\right)\le\left(\frac{2x+y+z}{2}\right)^2=\frac{\left(2x+y+z\right)^2}{4}\\\left(x+y\right)\left(y+z\right)\le\left(\frac{x+2y+z}{2}\right)^2=\frac{\left(x+2y+z\right)^2}{4}\\\left(x+z\right)\left(y+z\right)\le\left(\frac{x+y+2z}{2}\right)^2=\frac{\left(x+y+2z\right)^2}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\ge\frac{4\left(y+z\right)\left(2x+y+z\right)}{\left(2x+y+z\right)^2}=\frac{4\left(y+z\right)}{2x+y+z}\\\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}\ge\frac{4\left(x+z\right)\left(x+2y+z\right)}{\left(x+2y+z\right)^2}=\frac{4\left(x+z\right)}{x+2y+z}\\\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\ge\frac{4\left(x+y\right)\left(x+y+2z\right)}{\left(x+y+2z\right)^2}=\frac{4\left(x+y\right)}{x+y+2z}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{4\left(y+z\right)}{2x+y+z}+\frac{4\left(x+z\right)}{x+2y+z}+\frac{4\left(x+y\right)}{x+y+2z}\)

\(\Rightarrow VT\ge4\left(\frac{y+z}{2x+y+z}+\frac{x+z}{x+2y+z}+\frac{x+y}{x+y+2z}\right)\)

Ta có: \(x+y+z=1\)

\(\Rightarrow\left\{\begin{matrix}y+z=1-x\\x+z=1-y\\x+y=1-z\end{matrix}\right.\) ( 1 )

\(\Rightarrow\left\{\begin{matrix}2x+y+z=1+x\\x+2y+z=1+y\\x+y+2z=1+z\end{matrix}\right.\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\ge4\left(\frac{1-x}{1+x}+\frac{1-y}{1+y}+\frac{1-z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left(\frac{1+x-2x}{1+x}+\frac{1+y-2y}{1+y}+\frac{1+z-2z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left[3-\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\right]\)

\(\Rightarrow VT\ge12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\)

Chứng minh rằng \(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Leftrightarrow4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\le6\)

\(\Leftrightarrow\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1+x-1}{1+x}+\frac{1+y-1}{1+y}+\frac{1+z-1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow1-\frac{1}{1+x}+1-\frac{1}{1+y}+1-\frac{1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}=\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le3-\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\) ( đpcm )

\(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Rightarrow VT\ge6\)

\(\Leftrightarrow\)\(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\ge6\) ( đpcm )

AH
Akai Haruma
Giáo viên
23 tháng 2 2017

Cách khác:

\(A=\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\Leftrightarrow A=\frac{1-x^2}{(x+y)(x+z)}+\frac{1-y^2}{(y+z)(y+x)}+\frac{1-z^2}{(z+x)(z+y)}=\frac{2(x+y+z)-[xy(x+y)+yz(y+z)+xz(x+z)]}{(x+y)(y+z)(x+z)}\)

\(A\geq 6\Leftrightarrow 2-[xy(x+y)+yz(y+z)+xz(x+z)]\ge 6(x+y)(y+z)(x+z)\)

\(\Leftrightarrow 2+9xyz\geq 7(x+y+z)(xy+yz+xz)\)

\(\Leftrightarrow 2+9xyz\geq 7(xy+yz+xz)\) \((\star)\)

Theo BĐT Schur bậc 3 kết hợp AM-GM:

\(xyz\geq (x+y-z)(y+z-x)(x+z-y)=(1-2x)(1-2y)(1-2z)\)

\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)

\(\Rightarrow 2+9(xy+yz+xz)\geq 1+4(xy+yz+xz)=(x+y+z)^2+4(xy+yz+xz)\)\(\geq 7(xy+yz+xz)\)

Do đó \((\star)\) được CM. Bài toán hoàn tất. Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

1 tháng 6 2019

đặt A=\(\frac{1}{x\left(x+1\right)}\) +\(\frac{1}{y\left(y+1\right)}\) +\(\frac{1}{z\left(z+1\right)}\)=\(\frac{1}{x}\)-\(\frac{1}{x+1}\)+\(\frac{1}{y}\)-\(\frac{1}{y+1}\)+\(\frac{1}{z}\)-\(\frac{1}{z+1}\)

Áp dụng BĐT phụ \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\) (bạn tự chứng minh nha,quy đồng ,nhân chéo ,chuyển về )⇒\(\frac{1}{a+b}\)\(\frac{1}{4}\)(\(\frac{1}{a}\)+\(\frac{1}{b}\))

⇒A≥\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)-\(\frac{1}{4}\)(\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)+3)

⇒A≥\(\frac{3}{4}\) (\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\))-\(\frac{3}{4}\)\(\frac{3}{4}\) (\(\frac{9}{x+y+z}\))-\(\frac{3}{4}\)

⇒a≥\(\frac{9}{4}\)-\(\frac{3}{4}\)=\(\frac{3}{2}\) dpcm

1 tháng 6 2019

dấu bằng xảy ra⇔x=y=z=1

9 tháng 8 2019

mn ơi giú e