Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=x^3+x^2z+y^2z-xyz+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+z\right)\)
b) \(B=\left(x^2-xy+y^2\right)\left(x+y+z\right)=x^2-xy+y^2\)
\(=x^2-2.x.\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
Dấu bằng xảy ra khi \(x=y=0\)
Bài 1:
a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)
\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)
b.
\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)
Bài 2:
\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)
\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)
\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)
\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)
\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)
Ta có:
\(x^3+x^2z-xyz+y^2z+y^3\)
\(=\left(x^3+y^3\right)+\left(x^2z-xyz+y^2z\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)\)
\(=\left(x+y+z\right)\left(x^2-xy+y^2\right)\)
\(=0\cdot\left(x^2-xy+y^2\right)\)
\(=0\left(dpcm\right)\)