K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2016

Ta có: \(\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự cho 2 cái còn lại:

\(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(z+1\right)\left(x+1\right)}};\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(x+1\right)\left(y+1\right)}}\)

Nhân theo vế ta được:

\(\frac{1}{1+x}\cdot\frac{1}{1+y}\cdot\frac{1}{1+z}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)\(\Rightarrow xyz\le\frac{1}{8}\)

Dấu = khi \(\hept{\begin{cases}x=y=z\\\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2\end{cases}}\Leftrightarrow x=y=z=\frac{1}{2}\)

20 tháng 8 2020

+) Ta chứng minh: \(\frac{x-2}{x+1}\le\frac{x-2}{3}\)

\(\Leftrightarrow\frac{3\left(x-2\right)-\left(x-2\right)\left(x+1\right)}{3\left(x+1\right)}\le0\)'

\(\Leftrightarrow\frac{-\left(x-2\right)^2}{3\left(x+1\right)}\le0\)(luôn đúng)

+) \(6=3\sqrt[3]{xyz}\le x+y+z\)

+) \(\text{Σ}\frac{x-2}{x+1}\le\frac{x-2+y-2+z-2}{3}\le\frac{0}{3}=0\)

Dấu = xảy ra khi x = y = z = 2

11 tháng 5 2018

áp dụng bđt cosi ta có:

\(x^3+y^3+1>=3xy\Rightarrow\frac{1}{x^3+y^3+1}< =\frac{1}{3xy}\)

tương tự \(\frac{1}{y^3+z^3+1}< =\frac{1}{3yz};\frac{1}{z^3+x^3+1}< =\frac{1}{3zx}\)

dấu = xảy ra khi x=y=z=1(thỏa mãn vì khi đó xyz=1*1*1=1)

\(\Rightarrow A< =\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)

\(\Rightarrow\)max của A là \(\frac{1}{3xy}+\frac{1}{3yz}+\frac{1}{3zx}\)khi x=y=z=1

khi đó A=\(\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}+\frac{1}{3\cdot1\cdot1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

vậy max A là 1 khi x=y=z=1

11 tháng 5 2018

Với x, y>o ta có bđt \(a^3+b^3\ge ab\left(a+b\right)\Rightarrow a^3+b^3+1\ge ab\left(a+b\right)+1=ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Cmtt ta được A\(\le\frac{a+b+c}{a+b+c}=1\)

Dấu = xra khi a=b=c và abc=1 =>a=b=c=1

2 tháng 9 2016

Xét giả thiết : \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\Leftrightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)

\(\Leftrightarrow\frac{1}{1+x}\ge\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)

Tương tự : \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\) ; \(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân các bđt trên theo vế : \(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)

\(\Rightarrow1\ge8xyz\Rightarrow xyz\le\frac{1}{8}\)

Dấu "=" xảy ra khi \(\begin{cases}\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=2\\\frac{1}{1+x}=\frac{1}{1+y}=\frac{1}{1+z}\end{cases}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Vậy max (xyz) = 1/8 <=> x = y = z = 1/2

2 tháng 7 2019

ta có \(\frac{2}{\sqrt{x}}-z=\frac{2\sqrt{xyz}}{\sqrt{x}}-z\)\(=2\sqrt{yz}-z\le y+z-z=y\)THEO bđt côsi

Tương tự \(\frac{2}{\sqrt{y}}-x\le z\)và \(\frac{2}{\sqrt{z}}-y\le x\)

\(\Rightarrow A\le xyz=1\)

VẬY MAX A=1 TẠI x=y=z=1

2 tháng 7 2019

quang phan duy Sol hay đấy =) hay hơn cách tôi rồi