\(\sqrt{3}\). Tìm MIN P=\(\frac{\sqrt{2x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

Áp dụng BĐT AM-GM ta có:

\(2x^2+y^2\ge2\sqrt{2x^2.y^2}=2\sqrt{2}xy\)

\(\Rightarrow\sqrt{2x^2+y^2}\ge\sqrt{2\sqrt{2}xy}=\sqrt{2\sqrt{2}}\sqrt{xy}\)

\(\Rightarrow P=\frac{\sqrt{2x^2+y^2}}{\sqrt{xy}}\ge\frac{\sqrt{2\sqrt{2}}.\sqrt{xy}}{\sqrt{xy}}=\sqrt{2\sqrt{2}}=\)

Vậy minP=\(\sqrt{2\sqrt{2}}\) đạt được khi \(\sqrt{2}x=y\)

19 tháng 11 2015

gọi P là cái 1/x+1/y+1/z nha

1) (1/x+1/y+1/z)^2 = 1/x^2 + 1/y^2 + 1/z^2 + 2/(xy) + 2/(yz) + 2/(zx) 
---> 3 = P + 2(x+y+z)/(xyz) = P + 2 ---> P = 1 

19 tháng 11 2015

bạn giải đi rùi mình tick cho

31 tháng 7 2019

Ta có \(\frac{\sqrt{x^2+2y^2}}{xy}=\sqrt{\frac{1}{y^2}+\frac{2}{x^2}}\)

Áp dụng BĐT Buniacoxki ta có 

\(\sqrt{\left(\frac{1}{y^2}+\frac{2}{x^2}\right)\left(1+2\right)}\ge\sqrt{\left(\frac{1}{y}+\frac{2}{x}\right)^2}=\frac{1}{y}+\frac{2}{x}\)

=> \(\sqrt{3}A\ge3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3\)

=> \(A\ge\sqrt{3}\)

\(MinA=\sqrt{3}\)khi x=y=z=3

26 tháng 8 2019

3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)

=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)

AD bđt cosi vs hai số dương có:

\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)

\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)

\(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))

=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)

<=> P \(\ge4.5\)

Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)

=> a=2,b=3

Vậy minP=4.5 <=>a=1,b=2

22 tháng 11 2015

\(\frac{1}{x}=a;\text{ }\frac{1}{y}=b;\text{ }\frac{1}{z}=c\Rightarrow a+b+c=\sqrt{3}\)

\(P=\sqrt{2b^2+a^2}+\sqrt{2c^2+b^2}+\sqrt{2a^2+c^2}\)

Tìm Min P giờ khá đơn giản, bạn tự chứng minh nhé

15 tháng 8 2020

TỪ GT =>    \(3\le xy+yz+zx\)

=>    \(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{x^2+xy+yz+zx}}\)

=>     \(P\ge\frac{x^3}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

TA ÁP DỤNG BĐT CAUCHY 2 SỐ SẼ ĐƯỢC:

=> \(\hept{\begin{cases}\sqrt{x+y}.\sqrt{y+z}\le\frac{x+2y+z}{2}\\\sqrt{z+x}.\sqrt{z+y}\le\frac{x+y+2z}{2}\\\sqrt{x+y}.\sqrt{x+z}\le\frac{2x+y+z}{2}\end{cases}}\)

=>   \(P\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)

=>   \(P\ge\frac{2x^4}{x^2+2xy+2xz}+\frac{2y^4}{xy+y^2+2yz}+\frac{2z^4}{2xz+yz+z^2}\)

TA TIẾP TỤC ÁP DỤNG BĐT CAUCHY - SCHWARZ SẼ ĐƯỢC: 

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

TA CÓ 1 BĐT SAU:      \(xy+yz+zx\le x^2+y^2+z^2\)      (*)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+3\left(x^2+y^2+z^2\right)}\)

=>   \(P\ge\frac{2\left(x^2+y^2+z^2\right)^2}{4\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)

TA LẠI 1 LẦN NỮA SỬ DỤNG BĐT (*) SẼ ĐƯỢC:  

=>   \(P\ge\frac{xy+yz+zx}{2}\ge\frac{3}{2}\left(gt\right)\)

DẤU "=" XẢY RA <=>   \(x=y=z\)

VẬY P MIN \(=\frac{3}{2}\Leftrightarrow x=y=z=1\)

15 tháng 8 2020

Ta có :

\(P\ge\frac{x^3}{\sqrt{y^2+xy+yz+zx}}+\frac{y^3}{\sqrt{z^2+xy+yz+zx}}+\frac{z^3}{\sqrt{z^2+xy+yz+zx}}\)

\(=\frac{x^3}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\frac{y^3}{\sqrt{\left(z+x\right)\left(z+y\right)}}+\frac{z^3}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

\(\ge\frac{2x^3}{x+2y+z}+\frac{2y^3}{x+y+2z}+\frac{2z^3}{2x+y+z}\)\(\ge2.\frac{\left(x^2+y^2+z^2\right)^2}{\left(x^2+y^2+z^2\right)+3.\left(xy+yz+zx\right)}\ge2.\frac{\left(xy+yz+zx\right)^2}{4.\left(xy+yz+zx\right)}\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)