Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x^2+yz}\le\frac{1}{2\sqrt{x^2.yz}}=\frac{1}{2\sqrt{xy.xz}}\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{xz}\right)\)
Tương tự: \(\frac{1}{y^2+zx}\le\frac{1}{4}\left(\frac{1}{xy}+\frac{1}{yz}\right)\) ; \(\frac{1}{z^2+xy}\le\frac{1}{4}\left(\frac{1}{xz}+\frac{1}{yz}\right)\)
Cộng vế với vế ta sẽ có đpcm
Với a; b dương, nếu \(a\ge b\) thì \(\dfrac{1}{a}\le\dfrac{1}{b}\)
Áp dụng BĐT Cô-si cho mẫu số vế trái ta được:
\(\dfrac{1}{x^2+yz}+\dfrac{1}{y^2+xz}+\dfrac{1}{z^2+xy}\le\dfrac{1}{2x\sqrt{yz}}+\dfrac{1}{2y\sqrt{xz}}+\dfrac{1}{2z\sqrt{xy}}\)
\(\Rightarrow VT\le\dfrac{\sqrt{yz}}{2xyz}+\dfrac{\sqrt{xz}}{2xyz}+\dfrac{\sqrt{xy}}{2xyz}=\dfrac{\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}{2xyz}\)
Tiếp tục dùng Cô-si cho tử số:
\(VT\le\dfrac{\dfrac{y+z}{2}+\dfrac{x+z}{2}+\dfrac{x+y}{2}}{2xyz}=\dfrac{x+y+z}{2xyz}\)
\(\Rightarrow VT\le\dfrac{1}{2}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)\) (đpcm)
Dấu "=" xảy ra khi x=y=z
Lời giải:
BĐT cần chứng mình tương đương với:
$(xy+yz+xz)^2\geq 3(x+y+z)$
$\Leftrightarrow (xy+yz+xz)^2\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z)\geq 3xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2\geq xyz(x+y+z)$
$\Leftrightarrow (xy)^2+(yz)^2+(xz)^2-xyz(x+y+z)\geq 0$
$\Leftrightarrow 2(xy)^2+2(yz)^2+2(xz)^2-2xyz(x+y+z)\geq 0$
$\Leftrightarrow (xy-yz)^2+(yz-xz)^2+(xz-xy)^2\geq 0$
(luôn đúng với mọi $x,y,z\geq 0$)
Dấu "=" xảy ra khi $x=y=z=1$
Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)
\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)
Trước hết, ta đi chứng minh một bổ đề sau: Nếu \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\). Thật vậy, ta phân tích
\(P=a^3+b^3+c^3-3abc\)
\(P=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(P=\left(a+b+c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(P=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).
Hiển nhiên nếu \(a+b+c=0\) thì \(P=0\) hay \(a^3+b^3+c^3=3abc\), bổ đề được chứng minh.
Do \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) nên áp dụng bổ đề, ta được \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\).
Vì vậy \(\dfrac{yz}{x^2}+\dfrac{zx}{y^2}+\dfrac{xy}{z^2}=\dfrac{xyz}{x^3}+\dfrac{xyz}{y^3}+\dfrac{xyz}{z^3}\) \(=xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\) \(=xyz.\dfrac{3}{xyz}=3\). Ta có đpcm
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Áp dụng bất đẳng thức AM - GM:
\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).
Áp dụng bất đẳng thức AM - GM ta có:
\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).
Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).
Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)
\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).
Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)
Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)
\(\Rightarrow P\ge\dfrac{15}{2}\).
Vậy...
Áp dụng bất đẳng thức AM - GM:
P≥33√(xy+1)(yz+1)(zx+1)xyz.
Áp dụng bất đẳng thức AM - GM ta có:
xy+1=xy+14+14+14+14≥55√xy44.
Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.
Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412
⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.
Mà xyz≤(x+y+z)327=18
Nên (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258
⇒P≥152.
ta có bđt phụ ,,,,,,,, x2+y2+z2 >= xy+yz+zx
thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương
Lời giải:
Bổ sung đk $x,y,z\geq 0$
Áp dụng BĐT Cauchy-Schwarz:
$\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\geq \frac{9}{1+xy+1+yz+1+xz}=\frac{9}{xy+yz+xz+3}\geq \frac{9}{3+3}=\frac{3}{2}$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$