Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: x+y+xy = 35
=> x+y = 35-xy
=>(x+y)2 = (35-xy)2
=> x2 + 2xy+y2= 352 - 70xy+x2y2
=> x2 +y2 = 352 - 70xy +x2y2 -2xy
x2 +y2 = 362 - 72xy + x2y2 - 71
\(x^2+y^2=\left(36-xy\right)^2-71\ge-71.\)
=> \(Min_{x^2+y^2=-71}\)
Đây nhá : Câu hỏi của Bonking - Toán lớp 8 | Học trực tuyến
Chưa biết ai đúng nhưng lời giải của Luân Đào nghe có vẻ hợp lí hơn :))
1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
b/
\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)
\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)
\(=16+8+20=44\)
\(\Rightarrow B\ge11\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
\(a,x^2+y^2-x-y=8\)
\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)
Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)
Để VP=0 và là các số nguyên
=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)
a/ x^2 + y^2 - x - y = 8
<=> 4x^2 + 4y^2 - 4x - 4y = 32
<=> (2x - 1)^2 + (2y - 1)^2 = 34
<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25
Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9
a,
\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)
\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)
*Áp dụng Cosi với x,y>0 ta có:
\(x+y\ge2\sqrt{xy}\left(1\right)\)
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\left(2\right)\)
Nhân (1),(2) có: \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\RightarrowĐPCM\)
**\(\frac{1}{xy}+\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}+\frac{1}{x^2+y^2}\)
Ta có: \(\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{4}{x^2+2xy+y^2}=4\)
Có: \(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{\left(x+y\right)^2}\le4\)
Theo Cosi ta có: \(xy\le\left(\frac{x+y}{2}\right)^2\)
\(\Rightarrow\frac{1}{xy}\ge\left(\frac{2}{x+y}\right)^2\ge\left(\frac{2}{1}\right)^2=4\)
Áp dụng Cosi ta có: \(2xy\left(x^2+y^2\right)\le\left(\frac{x^2+2xy+y^2}{2}\right)^2=\frac{\left(x+y\right)^4}{4}\le\frac{1}{4}\)
\(\Rightarrow xy\left(x^2+y^2\right)\le\frac{1}{8}\)(1)
Mà ta có ở trên: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{1}{4}\)(2)
Từ (1) và (2) ta có: \(x^2+y^2\le\frac{1}{2}\Rightarrow\frac{1}{x^2+y^2}\ge2\)
Vậy Ta có: \(\frac{1}{xy}+\frac{1}{x^2+xy}+\frac{1}{y^2+xy}+\frac{1}{x^2+y^2}\ge4+4+2=10\)
Với x=y=1/2
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
Bài 2 bạn tham khảo cách làm của cô Linh Chi tại đây nhé :
Câu hỏi của nguyen trung nghia - Toán lớp 8 - Học toán với OnlineMath
Học tốt và cá tháng tư đừng để bị troll nha !!!!!!!!!!!
B1:
\(M=\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(=2+\frac{x}{y}+\frac{y}{x}\)
Nhờ dự đoán được điểm rơi,ta chứng minh bất đẳng thức sau luôn đúng:\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
Thật vậy !!!
\(\frac{x}{y}+\frac{y}{x}\le\frac{5}{2}\)
\(\Leftrightarrow\left(\frac{x}{y}-\frac{1}{2}\right)+\left(\frac{y}{x}-2\right)\le0\)
\(\Leftrightarrow\frac{2x-y}{2y}+\frac{y-2x}{x}\le0\)
\(\Leftrightarrow\frac{2x^2-xy+2y^2-4xy}{2xy}\le0\)
\(\Leftrightarrow2x^2-5xy+2y^2\le0\)
\(\Leftrightarrow\left(x-2y\right)\left(2x-y\right)\le0\) ( đúng )
Dấu "=" xảy ra tại \(x=1;y=2\)
Vậy \(M_{max}=\frac{9}{2}\Leftrightarrow x=1;y=2\)
\(x+xy+y=35\)
\(\Rightarrow x+xy+y+1=36\)
\(\Rightarrow x\left(y+1\right)+\left(y+1\right)=36\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=36\)
Theo Cô si ta có:
\(36=\left(x+1\right)\left(y+1\right)\le\dfrac{\left[\left(x+1\right)+\left(y+1\right)\right]^2}{4}=\dfrac{\left(x+y+2\right)^2}{4}\)
\(\Rightarrow\left(x+y+2\right)^2\ge144\)
\(\Rightarrow x+y+2\ge12\)
\(\Rightarrow x+y\ge10\)
Lại có: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\ge10^2=100\)
\(\Rightarrow x^2+y^2\ge50\)
Dấu "=" xảy ra khi \(x=y=5\)
Cho em hỏi cách giải sau sai ở đâu ạ :(
\(x+y+xy=35\)
\(\Leftrightarrow2x+2y+2xy=70\)
\(\Leftrightarrow2xy=70-2x-2y\)
Mặt khác ta có :
\(x^2+y^2=\left(x+y\right)^2-2xy\)
\(=\left(x+y\right)^2-70+2x+2y\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1-71\)
\(=\left(x+y+1\right)^2-71\ge-71\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow x+y+1=0\)