Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x2 = yz (1) ; y2 = xz (2) ; z2 = xy (3)
Từ (1) => z= x2/y. Từ (2) => z = y2/x => x2/y = y2/x => x3 = y3 => x = y (*)
Tương tự : Từ (1) => y =x2/z. Từ (3) => y = z2/x => x2/z = z2/x => x3 = z3 => x = z(**)
Từ (*) và (**) suy ra x = y = z
a,-200 x10 t10z3
b,\(\frac{-5}{4}\)x11 y5 z4
c,\(\frac{2}{15}\)x6 y6 z9
d,\(\frac{1}{7}\)x10 y6 z7
e,-4z6 y10 z6
Bạn tham khảo ở đây nhé.
Câu hỏi của Trịnh Hương Quỳnh - Toán lớp 7 - Học toán với OnlineMath
\(x^2=yz,y^2=xz,z^2=xy\Rightarrow x^2+y^2+z^2=xy+yz+zx\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz+2y\Leftrightarrow\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y,y=z,x=z\Leftrightarrow x=y=z\)
Ta có :x2 = yz , y2 = xz , z2 = xy
=> x2.y2.z2=yz.xz.xy
=>x2.y2.z2=y2.z2.x2
=>xyz=yxz
=> x=y=z
Sai đề nhé.
Sửa: Cho \(x^2=yz\). CMR:\(\frac{x^2+y^2}{x^2+z^2}=\frac{y}{z}\left(x;y;z\ne0\right)\)
Ta có: \(x^2=yz\)
\(\Rightarrow\frac{yz+y^2}{yz+z^2}=\frac{y\left(y+z\right)}{z\left(y+z\right)}=\frac{y}{z}\)( vì \(y+z\ne0\))
đpcm
Tham khảo nhé~
Lời giải:
1.
\((-2x^4y^3z^7)^2(\frac{1}{4}xy^5)(-3x^2yz)^3(\frac{-1}{27}x^3yz^2)\)
\(=(4x^8y^6z^{14})(\frac{1}{4}xy^5)(-27x^6y^3z^3)(-\frac{1}{27}x^3yz^2)\)
\(=(4.\frac{1}{4}.-27.\frac{-1}{27})(x^8.x.x^6.x^3)(y^6.y^5.y^3.y)(z^{14}.z^3.z^2)\)
\(=x^{18}.y^{15}.z^{19}\)
2.
\(=(\frac{-1}{3}.\frac{4}{5}.\frac{-27}{10})(x.x^5.x^2)(y^2.y^6.y)(z.z.z^4)\)
\(=\frac{18}{25}.x^8.y^9.z^6\)
3.
\(=(49.x^{10}y^2z^4)(\frac{-1}{4}.x^3yz^7)(\frac{8}{21}x^5z^4)\)
\(=(49.\frac{-1}{4}.\frac{8}{21})(x^{10}.x^3.x^5)(y^2.y)(z^4.z^7.z^4)\)
\(=\frac{-14}{3}.x^{18}.y^3.z^{15}\)
4.
\(=(\frac{-1}{64}.x^8.y^9.z^{12})(4x^2y^2z^4)(\frac{-5}{3}x^4yz)\)
\(=(\frac{-1}{64}.4.\frac{-5}{3})(x^8.x^2.x^4)(y^9.y^2.y)(z^{12}.z^4.z)\)
\(=\frac{5}{48}.x^{14}.y^{12}.z^{17}\)
5.
\(=(\frac{1}{16}.x^8.y^4z^2)(-8xyz^2).(-\frac{1}{2}x^4yz)\)
\(=(\frac{1}{16}.-8.\frac{-1}{2})(x^8.x.x^4)(y^4.y.y)(z^2.z^2.z)\)
\(=\frac{1}{4}.x^{13}.y^6.z^5\)