Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E hổng biết cách này có đúng ko nữa:((
5
Ta có:\(S=\frac{2010}{x}+\frac{1}{2010y}+\frac{1010}{1005}\ge2\sqrt{\frac{2010}{x}\cdot\frac{1}{2010y}}+\frac{1010}{1005}\left(AM-GM\right)\)
\(=\frac{2}{\sqrt{xy}}+\frac{2010}{1005}\ge\frac{2}{\frac{x+y}{2}}+2=4\)( AM-GM ngược dấu )
Dấu "=" xảy ra khi \(x=y=\frac{2010}{4024}\)
Áp dụng bđt \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
Dấu bằng xảy ra khi \(ad=bc\)
\(x\sqrt{1-y^2}+\sqrt{1-x^2}.y\le\left|x\sqrt{1-y^2}+\sqrt{1-x^2}.y\right|\le\sqrt{x^2+1-x^2}.\sqrt{1-y^2+y^2}=1\)
Dấu bằng xảy ra khi \(xy=\sqrt{1-x^2}.\sqrt{1-y^2}\Leftrightarrow x^2y^2=x^2y^2+1-\left(x^2+y^2\right)\)
\(\Leftrightarrow x^2+y^2=1\)
chứng minh là đề sai nhé :
\(2\sqrt{x}=1+\sqrt{y}\ge1\) \(\Rightarrow\sqrt{x}\ge\frac{1}{2}\Rightarrow x\ge\frac{1}{4}\)
\(x+y\ge\frac{1}{4}>\frac{1}{5}\)( ko có dấu bằng xảy ra )
mình nghĩ sửa \(2\sqrt{x}-\sqrt{y}=1\)thành \(2\sqrt{x}+\sqrt{y}=1\)
Khi đó: Áp dụng BĐT Bu-nhi-a-cốp-ski , ta có :
\(\left(2.\sqrt{x}+1.\sqrt{y}\right)^2\le\left(2^2+1^2\right)\left(x+y\right)\)
\(\Rightarrow x+y\ge\frac{1}{5}\) . Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{2}{\sqrt{x}}=\frac{1}{\sqrt{y}}\\2\sqrt{x}+\sqrt{y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{25}\\y=\frac{1}{25}\end{cases}}\)
gt <=> \(x\sqrt{1-y^2}=1-y\sqrt{1-x^2}\)
<=> \(x^2\left(1-y^2\right)=1+y^2\left(1-x^2\right)-2y\sqrt{1-x^2}\)
<=> \(x^2-x^2y^2=1+y^2-x^2y^2-2y\sqrt{1-x^2}\)
<=> \(2y\sqrt{1-x^2}=y^2-x^2+1\)
<=> \(4y^2\left(1-x^2\right)=\left(y^2-x^2+1\right)^2\)
<=> \(4y^2-4x^2y^2=x^4+y^4+1-2x^2y^2-2x^2+2y^2\)
<=> \(x^4+y^4+2x^2y^2-2x^2-2y^2+1=0\)
<=> \(\left(x^4+y^4+2x^2y^2\right)-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2-1\right)^2=0\)
<=> \(x^2+y^2-1=0\)
<=> \(x^2+y^2=1\)
VẬY TA CÓ ĐPCM.
Bài của Hermit thiếu điều kiện xác định + bài làm dài
\(-1\le x;y\le1\) theo bài ra ta có:
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-y^2}\)
\(=\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-x^2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x\right|=\sqrt{1-y^2}\\\left|y\right|=\sqrt{1-x^2}\end{cases}\Leftrightarrow x^2=1-y^2\Leftrightarrow x^2+y^2=1\left(đpcm\right)}\)
VẬy bạn giải ra cho mọi người xem được ko?
Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\)
\(\Leftrightarrow\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right)+\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
\(\Leftrightarrow x=y\)
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy