Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{4x^2+4x+1-\left(4x^2-4x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{8x}{2x+1}\cdot\dfrac{5}{4x}=\dfrac{10}{2x+1}\)
c: \(=\dfrac{1}{x-1}-\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{x+1-x+1}{\left(x-1\right)^2\cdot\left(x+1\right)}\right)\)
\(=\dfrac{1}{x-1}-\dfrac{x}{x^2+1}\cdot\dfrac{2}{\left(x-1\right)}=\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{x-1}{x^2+1}\)
ĐKXĐ: \(x\ne\pm y\)
\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)}-\dfrac{2xy^2}{x^4-2x^2y^2+y^4}+\dfrac{7^2}{\left(x^2-y^2\right)\left(x+y\right)}\)
\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)}-\dfrac{2xy^2}{\left(\left(x+y\right).\left(x-y\right)\right)^2}+\dfrac{49}{\left(x+y\right)^2.\left(x-y\right)}\)
\(A=\dfrac{x^2}{\left(x-y\right)^2.\left(x+y\right)^{ }}-\dfrac{2xy^2}{\left(x-y\right)^2.\left(x+y\right)^2}+\dfrac{49}{\left(x+y\right)^2.\left(x-y\right)}\)
\(A=\dfrac{x^2.\left(x+y\right)-2xy^2+49.\left(x-y\right)}{\left(x-y\right)^2.\left(x+y\right)^2}\)
\(A=\dfrac{x^3+x^2y-2xy^2+49x-49y}{\left(x-y\right)^2.\left(x+y\right)^2}\)
ĐKXĐ: \(x\ne\pm1\)
\(B=\dfrac{x+3}{x+1}-\dfrac{2x-1}{x-1}-\dfrac{x-3}{x-1}\)
\(B=\dfrac{\left(x+3\right).\left(x-1\right)-\left(2x-1\right).\left(x+1\right)-\left(x-3\right)\left(x+1\right)}{\left(x+1\right).\left(x-1\right)}\)
\(B=\dfrac{x^2-x+3x-3-2x^2-2x+x+1-x^2-x+3x+3}{\left(x+1\right).\left(x-1\right)}\)
\(B=\dfrac{-4x^2+4x+1}{\left(x+1\right).\left(x-1\right)}=\dfrac{1+4x-4x^2}{\left(x+1\right).\left(x-1\right)}=\dfrac{\left(1-2x\right)^2}{\left(x+1\right).\left(x-1\right)}\)
a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1\right)\left(2x+1\right)}{2x^2-1}-\dfrac{\left(2x-1\right)\left(2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\left(\dfrac{\left(2x+1-2x-1\right)\left(2x+1+2x-1\right)}{2x^2-1}\right):\dfrac{4x}{10x-5}\)
\(=\dfrac{4x}{2x^2-1}.\dfrac{5\left(2x-1\right)}{4x}\)
\(=\dfrac{5}{2x+1}\)
b) \(\left(\dfrac{1}{x^2+1}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1}{x^2+1}-\dfrac{x\left(2-x\right)}{x\left(x+1\right)}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{1}{x}+\dfrac{x^2}{x}-\dfrac{2x}{x}\right)\)
\(=\left(\dfrac{1-2x+x^2}{x^2+1}\right):\left(\dfrac{x^2-2x+1}{x}\right)\)
\(=\dfrac{\left(x-1\right)^2}{x^2+1}.\dfrac{x}{\left(x-1\right)^2}\)
\(=\dfrac{x}{x^2+1}\)
c) d) Tự làm đi mình làm biếng quass >.< ^^
Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)
\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)
\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)
\(\Rightarrow P=abc\)
Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z
Trả lời
Từ giả thiết x+y+z=xyz <=> 1/xy + 1/yz + 1/zx = 1
Khi đó: x/1+x2 = \(\frac{1}{\frac{x}{\left(\frac{1}{z}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}}\)\(=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)
Tương tự cho 2 cái còn lại ta có:\(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)
\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)
Suy ra VT=\(\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
ĐPCM
Ta có:\(\frac{x}{1+x^2}=\frac{xyz}{yz+x^2yz}=\frac{xyz}{yz+x\left(xyz\right)}=\frac{xyz}{yz+x\left(x+y+z\right)}=\frac{xyz}{yz+x^2+xy+xz}=\frac{xyz}{y\left(x+z\right)+x\left(x+z\right)}\)
\(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}\)
Chứng minh tương tự : \(\frac{2y}{1+y^2}=\frac{2xyz}{\left(y+z\right)\left(y+x\right)}\)
\(\frac{3z}{1+z^2}=\frac{3xyz}{\left(x+z\right)\left(x+y\right)}\)
Khi đó VT \(=\frac{xyz}{\left(x+z\right)\left(y+x\right)}+\frac{2xyz}{\left(y+z\right)\left(y+x\right)}+\frac{3xyz}{\left(x+z\right)\left(z+y\right)}\)
\(=\frac{xyz\left[y+z+2\left(z+x\right)+3\left(x+y\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\left(đpcm\right)\)
( mình đang vội nên làm hơi tắt mong bạn thông cảm )
\(=\left(\dfrac{x\left(x+y\right)}{x^2\left(x+y\right)+y^2\left(x+y\right)}+\dfrac{y}{x^2+y^2}\right):\left(\dfrac{1}{x-y}-\dfrac{2xy}{x^2\left(x-y\right)+y^2\left(x-y\right)}\right)\)
\(=\dfrac{x+y}{x^2+y^2}:\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)
\(=\dfrac{x+y}{x^2+y^2}:\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)
\(=\dfrac{x+y}{x^2+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+y^2\right)}{\left(x-y\right)^2}\)
\(=\dfrac{x+y}{x-y}\)
\(=\dfrac{x\left(x+y\right)}{\left(x+y\right)\left(x^2+y^2\right)}\cdot\left(\dfrac{1}{x-y}-\dfrac{2xy}{\left(x-y\right)\left(x^2+y^2\right)}\right)\)
\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x^2+y^2-2xy}{\left(x-y\right)\left(x^2+y^2\right)}\)
\(=\dfrac{x}{x^2+y^2}\cdot\dfrac{x-y}{x^2+y^2}=\dfrac{x\left(x-y\right)}{\left(x^2+y^2\right)^2}\)