\(x;y\ge0\)

a, \(x^2+y^2=1\). CMR 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2015

Vế 1:

\(x^3+y^3\ge\frac{1}{\sqrt{2}}\)

Áp dụng bất đẳng thức Côsi: \(x^3+x^3+\left(\frac{1}{\sqrt{2}}\right)^3\ge3\sqrt[3]{x^3.x^3.\left(\frac{1}{\sqrt{2}}\right)^3}=\frac{3}{\sqrt{2}}x^2\)

Tương tự: \(y^3+y^3+\left(\frac{1}{\sqrt{2}}\right)^3\ge\frac{3}{\sqrt{2}}y^2\)

\(\Rightarrow2x^3+2y^3+2.\left(\frac{1}{\sqrt{2}}\right)^3\ge\frac{3}{\sqrt{2}}\left(x^2+y^2\right)=\frac{3}{\sqrt{2}}\)

\(\Rightarrow x^3+y^3\ge\)\(\frac{1}{2}\left(\frac{3}{\sqrt{2}}-\frac{2}{2\sqrt{2}}\right)=\frac{1}{\sqrt{2}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{\sqrt{2}}\)

Vế 2: \(x^3+y^3\le1\)

\(x^2+y^2=1\) \(\Rightarrow x\le1;y\le1\)\(\Rightarrow x^3\le x^2;y^3\le y^2\)

\(\Rightarrow x^3+y^3\le x^2+y^2=1\)

Dấu "=" xảy ra khi \(x=0;y=1\) hoặc \(x=1;y=0\)

24 tháng 5 2017

Mk muốn làm giúp bạn lắm chứ nhưng mà khổ lỗi mk mới học lớp 6 . Xin lỗi bn

24 tháng 5 2017

bài 2 gợi ý từ hdt (x+y+z)^3=x^3+y^3+z^3+3(x+y)(y+z)(z+x) 

VT (ở đề bài) = a+b+c 

<=>....<=>3[căn bậc 3(a)+căn bậc 3(b)].[căn bậc 3(b)+căn bậc 3(c)].[căn bậc 3(c)+căn bậc 3 (a)]=0

từ đây rút a=-b,b=-c,c=-a đến đây tự giải quyết đc r 

5 tháng 1 2018

a, x^3-y^2-y=1/3

=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0

=> x > 0 

Tương tự : y,z đều > 0

Tk mk nha

6 tháng 1 2018

ta có hpt

<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)

Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)

Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)

=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)

=>\(y\ge z\) (2)

với y>= z, từ pt(2) =>z>=x (3)

Từ 91),(2),(3)

=> x=y=z>0 (ĐPCM)

Với x=y=z>0, thay vào pt(1), Ta có 

\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)

<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)

<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V

^_^