K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2020

a/

\(x+6y⋮17\Rightarrow5\left(x+6y\right)=5x+30y⋮17\)

\(5x+47y=\left(5x+30y\right)+17y\)

\(5x+30y⋮17\left(cmt\right);17y⋮17\Rightarrow5x+47y⋮17\)

b/

\(3x+16y⋮5\Rightarrow2\left(3x+16y\right)=6x+32y=\left(5x+30y\right)+\left(x+2y\right)⋮5\)

Mà \(5x+30y⋮5\Rightarrow x+2y⋮5\)

31 tháng 1 2017

1. ta có:  (a-b) + (b-a) = a-b+b-a = 0
Vậy (a-b) và (b-a) là hai số đối nhau
2.
a, (x-y) + (m-n) = x-y +m - n = x + m - y - n = (x+m) - (y+n)
b, (x-y) - (m-n) = x-y -m +n = x+n -y -m = (x+n) -(y+m)

31 tháng 1 2017
  1.  Gọi A = a - b và B = b - a, ta có :

A + B = a - b + b - a

A + B= a + (-b) + b + (-a)

A + B= a + (-a) + b + (-b)

A + B = 0 

Vì A + B = 0 mà hai số đối có tổng = 0 nên a - b và b - a là hai số đối nhau.

  1.  
  • a) (x - y) + (m - n)

= x - y + m - n

= x + (-y) + m + (-n)

= (x + m) + (-y) + (-n)

= (x + m) +[- (y + n)]

= (x + m) - (y + n)

  • b) (x - y) - (m - n)

= x - y - m + n

= x + (-y) + (-m) + n

= (x + n) + (-y) + (-m)

= (x + n) + [- (y + m)]

= (x + n) - (y + m)

10 tháng 3 2017

a) Ta có: \(\dfrac{15}{x}=\dfrac{y}{7}\)

\(\Rightarrow xy=105\)

\(\Rightarrow x,y\inƯ\left(105\right)\)

mà Ư(105) \(=\left\{..........\right\}\)

\(\Rightarrow x,y\in\left\{.........\right\}\)

Vậy \(x,y\in\left\{........\right\}\)

b) Lại có: \(\dfrac{2}{x+4}=\dfrac{y-3}{6}\)

\(\Rightarrow\left(x+4\right)\left(y-3\right)=12\)

\(x,y\in Z\Rightarrow\left[{}\begin{matrix}x+4\in Z\\y-3\in Z\end{matrix}\right.\)

\(\Rightarrow x+4\inƯ\left(12\right);y-3\inƯ\left(12\right)\)

\(Ư\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

Từ đó tự lập bảng xét các giá trị \(x,y.\)

Vậy \(\left(x,y\right)\in\left\{\left(...,...\right);...\right\}\)

11 tháng 3 2017

1a)\(\dfrac{15}{x}=\dfrac{y}{7}\)

suy ra x.y=15.7

x.y=105

x.y \(thuộc\)Ư(105)=3;5;7

Vậy x;y =3;5;7

5 tháng 12 2017

xy-3x+2y-6=x+9

xy-3y+2y-x=6+9

xy-y-x=15

7 tháng 3 2019

Bài 1:

   \(^{n^2+15}\)là số chính phương nên đặt \(n^2+15=a^2\left(a\in N\right)\)

\(\Rightarrow n^2-a^2=-15\Rightarrow n^2-an+an-a^2=-15\Rightarrow\left(n^2-an\right)+\left(an-a^2\right)=-15\)

\(\Rightarrow n\left(n-a\right)+a\left(n-a\right)=-15\Rightarrow\left(n+a\right)\left(n-a\right)=-15\)

Vì \(a,n\in N\Rightarrow n-a\le n+a\)

Xét các  trường hợp, bài toán đưa về dạng tổng-hiệu:

 TH1:\(\hept{\begin{cases}n-a=-1\\n+a=15\end{cases}\Rightarrow\left(n,a\right)=\left(8,7\right)}\Rightarrow n=8\)

TH2:\(\hept{\begin{cases}n-a=-3\\n+a=5\end{cases}\Rightarrow n=1}\)

TH3:\(\hept{\begin{cases}n-a=-5\\n+a=3\end{cases}\Rightarrow n=-1\notin N\Rightarrow}\)loại

TH4\(\hept{\begin{cases}n-a=-15\\n+a=1\end{cases}\Rightarrow n=-7\notin N\Rightarrow}\)loại

2 bài còn lại dễ ,bạn tự làm nhé

7 tháng 3 2019

Làm đầy đủ minhg k cho , và đang rất cần gấp