K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

Theo bài ra ta có:

x + y = a + b => (x + y)2 = (a + b)2 <=> 2xy = 2ab <=> xy = ab

Do đó, x và y là nghiệm của PT: t2 -(a + b).t  - ab = 0

\(\Delta=\left(a+b\right)^2-4ab=...=\left(a-b\right)^2\)

=> x = a hoặc x = b; y = b hoặc y = a

Từ đó hiển nhiên xn + yn = an + bn đúng. 

13 tháng 4 2016

Đính chính: PT: t-(a+b)t + ab = 0

21 tháng 10 2019

x+y=a+b => (x+y)2 =(a+b)2 => x2 +2xy+ y2 =a2 +2ab+b2 => xy=ab 

ta sẽ chứng mính bằng phương pháp quy nạp.

Với n =1, n=2 thì đẳng thức đúng

Giả sử  xn-1 +yn-1 = an-1 +bn-1; xn +yn = an +bn , ta sẽ chứng minh đẳng thức cũng đúng với n+1

\(x^{n+1}+y^{n+1}=\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=\left(a^n+b^n\right)\left(a+b\right)-\)ab(an-1 +bn-1 ) = an+1 + bn+1 (đúng)

vậy đẳng thức đúng với mọi n

2 tháng 4 2020

+) Ta có : \(x^2+y^2=a^2+b^2\)

\(\Leftrightarrow x^2-a^2=b^2-y^2\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\) ( * ) 

+) Ta có : \(x+y=a+b\)

\(\Leftrightarrow x-a=b-y\)

Thay \(x-a=b-y\) vào ( * ) ta được : 

\(\left(b-y\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

\(\Leftrightarrow\left(b-y\right)\left(x+a\right)-\left(b-y\right)\left(b+y\right)=0\)

\(\Leftrightarrow\left(b-y\right)\left[\left(x+a\right)-\left(b+y\right)\right]=0\)

\(\Leftrightarrow\left(b-y\right)\left(x+a-b-y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b-y=0\\x+a-b-y=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}b=y\\x+a=b+y\end{cases}}\)

TH1 :\(b=y\)

\(\Rightarrow b-y=0\)

​​\(\Rightarrow x-a=0\)

\(\Rightarrow x=a\)

\(\Rightarrow x^n+y^n=a^n+b^n\) ( 1 ) 

TH2 : \(x+a=b+y\)

Mà \(x-a=b-y\)

\(\Rightarrow x+a+x-a=b+y+b-y\)

\(\Rightarrow2x=2b\)

\(\Rightarrow x=b\)

\(\Rightarrow a=y\)

\(\Rightarrow x^n+y^n=a^n+b^n\) ( 2 ) 

Từ ( 1 ) ; ( 2 ) 

\(\Rightarrow\) đpcm 

23 tháng 1 2020

Ta có :

\(x^2+y^2=a^2+b^2\)

\(\Leftrightarrow x^2-a^2=b^2-y^2\)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

Mà \(x+y=a+b\)

\(\Leftrightarrow x-a=b-y\)

+ Nếu \(x-a=b-y=0\Leftrightarrow x=a;b=y\)      (1)

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=\left(b-y\right)\left(b+y\right)\)

\(\Leftrightarrow0=0\left(TM\right)\)

+ Nếu \(x-a=b-y\ne0\Leftrightarrow x+a=b+y\)

\(\Leftrightarrow x-y=b-a\)

Lại có : \(x+y=a+b\)

\(\Leftrightarrow\hept{\begin{cases}2x=2b\\-2y=-2a\end{cases}}\)Cái trên là cộng vế với vế 2 ptr, cái dưới là trừ vế cho vế của 2 ptr nhé )

\(\Leftrightarrow\hept{\begin{cases}x=b\\y=a\end{cases}}\) (2)

Từ (1) và (2) \(\Leftrightarrow x=a;y=b\)hoặc \(x=b;y=a\)

\(\Rightarrow x^n+y^n=a^n+b^n\)(đpcm)

1 tháng 10 2018

các bạn giúp mình nhé !!!

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z  thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

26 tháng 9 2017

1.a) (x+2)2-2(x+2)(x-8)+(x-8)2=[ (x+2)-(x-8) ]2=(x+2-x+8)2=102=100

b) (x+y-z-t)2-(z+t-x-y)2=(x+y-z-t+z+t-x-y)(x+y-z-t-z-t+x+y)

=0.-2(z+t-x-y)=0

26 tháng 9 2017

2. n3-n=n(n2-1)=n(n-1)(n+1)

Ta n(n-1)(n+1) là tích ba số nguyên tự nhiên

=>n(n-1)(n+1) chia hết cho 2 và 3

=>n(n-1)(n+1) chia hết cho 6

7 tháng 12 2018

B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                      \(=x^2+y^2+z^2+2.0\)

                                       \(=x^2+y^2+z^2\left(đpcm\right)\)

B2)  \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)

8 tháng 12 2018

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)

19 tháng 7 2018

\(x+y=a+b\)(1)

\(\Leftrightarrow\left(x+y\right)^3=\left(a+b\right)^3\)

\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=a^3+b^3+3ab\left(a+b\right)\)(2)

Ta thấy: \(x+y=a+b\Leftrightarrow\left(x+y\right)^2=\left(a+b\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2=a^2+2ab+b^2\). Mà \(x^2+y^2=a^2+b^2\)

\(\Rightarrow xy=ab\Rightarrow3xy=3ab\)(3)

Từ (1); (2) và (3) \(\Rightarrow x^3+y^3=a^3+b^3\)

Lại có: \(\left(x^2+y^2\right)^2=\left(a^2+b^2\right)^2\Leftrightarrow x^4+2x^2y^2+y^4=a^4+2a^2b^2+b^4\)

Vì \(xy=ab\Rightarrow2x^2y^2=2a^2b^2\Rightarrow x^4+y^4=a^4+b^4\)

Sau đó sử dụng phép quy nạp là xong.

20 tháng 7 2020

Ta có: xy = ab <=> \(\frac{x}{a}=\frac{b}{y}\)(a; y \(\ne\)0)

Đặt \(\frac{x}{a}=\frac{b}{y}=k\) => \(\hept{\begin{cases}x=ak\\b=yk\end{cases}}\)(*)

Khi đó: x + y = a + b <=> ak + y = a + yk

<=> ak - a + y - yk = 0

<=> a(k - 1) - y(k - 1) = 0

<=> (a - y)(k - 1) = 0

<=> \(\orbr{\begin{cases}a=y\\k=1\end{cases}}\)

Với a = y => b = x

<=> an = yn  (1) và bn = x(2) (x \(\in\)N)

Từ (1) và (2) cộng vế theo vế : an + bn = yn + xn

Với k = 1 thay vào (*) => \(\hept{\begin{cases}x=a\\b=y\end{cases}}\) <=> \(\hept{\begin{cases}x^n=a^n\\y^n=b^n\end{cases}}\) => xn + yn = an + bn

=> đpcm