![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Áp dụng BĐT AM-GM:
$x^2+1\geq 2x$
$y^2+1\geq 2y$
$z^2+1\geq 2z$
$x^2+y^2\geq 2xy$
$y^2+z^2\geq 2yz$
$z^2+x^2\geq 2xz$
Cộng các BĐT trên theo vế ta được:
$3(x^2+y^2+z^2)+3\geq 2(x+y+z+xy+yz+xz)$
$\Rightarrow 3(x^2+y^2+z^2)+3\geq 2.6=12$
$\Rightarrow x^2+y^2+z^2\geq 3$
Vậy $B_{\min}=3$. Giá trị này đạt tại $x=y=z=1$
Bài 3:
$5x^2+5y^2-3xy+\frac{2}{3}x+\frac{1}{3}y+\frac{1}{9}$
$=\frac{3}{2}(x^2+y^2-2xy)+\frac{7}{2}(x^2+\frac{4}{21}x+\frac{2^2}{21^2})+\frac{7}{2}(y^2+\frac{2}{21}y+\frac{1}{21^2})+\frac{1}{14}$
$=\frac{3}{2}(x-y)^2+\frac{7}{2}(x+\frac{2}{21})^2+\frac{7}{2}(y+\frac{1}{21})^2+\frac{1}{14}\geq \frac{1}{14}$
Do đó không tồn tại $x,y$ thỏa mãn đề.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(4x\left(x-3\right)-3x\left(2+x\right)=4x^2-12x-6x^2-3x^2=-5x^2-12x\)
b, \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)=10x^2+4x+6x^2-11x+3\)
\(=16x^2-7x+3\)
c, \(\left(x-1\right)^2-\left(x+2\right)\left(x-2\right)=x^2-2x+1-x^2+4=-2x+5\)
d, \(\left(1+2x\right)+2\left(1+2x\right)\left(x-1\right)+\left(x-1\right)^2\)
\(=1+2x+2\left(x-1+2x^2-2x\right)+x^2-2x+1\)
\(=x^2+2+2\left(-x-1+2x^2\right)=x^2+2-2x-2+4x^2=5x^2-2x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Evaluate the expression at
x3 + 12x + 48x + 64
= (x + 4)2
= (- 4 + 4)2
= 02
= 0
Fill in the blank: ............
x3 - a = (x - 2)(x2 + 2x + 4)
x3 - a = x3 - 8
a = 8
Evaluate
Answer:
a + b = 8
(a + b)2 = 82
a2 + b2 + 2ab = 64
a2 + b2 + 2 . 10 = 64
a2 + b2 + 20 = 64
a2 + b2 = 64 - 20
a2 + b2 = 44
(a - b)2
= a2 - 2ab + b2
= 44 - 2 . 10
= 44 - 20
= 24
Given .
Evaluate A at .
Answer: A
A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2
= x3 - 125 - x3 - 3x2 + 3x2
= - 125
Given .
Evaluate A at .
Answer: A
Answer:
Given
Answer:
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
(3x-2)(2x-1)=(2-3x)(x+3)
(3x-2)(2x-1)-(2-3x)(x+3)=0
(3x-2)(2x-1)+(3x-2)(x+3)=0
(3x-2)(2x-1+x+3)=0
(3x-2)(3x+2)=0
\(\orbr{\begin{cases}3x-2=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=2\\3x=-2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=\frac{-2}{3}\end{cases}}}\)
Vậy........
(=) 6x2 - 3x - 4x - 2 = 2x + 6 - 3x2 -9x
(=) 6x2 +3x2 - 7x + 7x + 2 -6 = 0
(=) 9x2 - 4 = 0
(=) 9x2 = 4
(=) x2 = \(\frac{9}{4}\)
(=) x = +- \(\frac{3}{2}\)