K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(P=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)\)

\(=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

\(=2\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)\)

\(=2\left(x^2+y^2\right)-3\left(x^2+y^2\right)-2xy\)

\(=-x^2-2xy-y^2\)

\(=-\left(x^2+2xy+y^2\right)\)

\(=-\left(x+y\right)^2\)

\(=-1\)

30 tháng 6 2018

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

1 tháng 7 2018

còn câu b ai giúp m vs

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.

       

15 tháng 12 2018

\(x^3-7x-6=0\)

\(x^3-3x^2+3x^2+2x-9x-6=0\)

\(x^2.\left(x-3\right)+3x.\left(x-3\right)+2.\left(x-3\right)=0\)

\(\left(x+3\right).\left(x^2+3x+2\right)=0\Rightarrow\left(x-3\right).\left(x^2+3x+x+2\right)=0\)

\(\Rightarrow\left(x-3\right).\left(x+1\right).\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\text{hoặc }x=-2\)

25 tháng 7 2019

a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=7^3+2\left(x^2+2xy+y^2\right)\)

\(=343+2\left(x+y\right)^2\)

\(=343+2.7^2\)

\(=343+98=441\)

25 tháng 7 2019

b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)

\(=\left(-5\right)^3-\left(x-y\right)^2\)

\(=-125-\left(-5\right)^2\)

\(=-125-25=-150\)

8 tháng 7 2019

1) Ta có: A = 2(x3 - y3) - 3(x + y)2

A = 2(x - y)(x2 + xy + y2) - 3(x2  + 2xy + y2)

A = 2.2(x2 + xy + y2) - 3(x2 + 2xy + y2)

A = 4x2 + 4xy + 4y2 - 3x2 - 6xy - 3y2

A = x2 - 2xy + y2

A = (x - y)2 

A = 22 = 4

2) xem lại đề

8 tháng 7 2019

Chỗ 3(x-y)^2 đó mn

5 tháng 9 2020

P = 3x2 - 2x + 3y2 - 2y + 6xy - 100

= 3( x2 + 2xy + y2 ) - 2( x + y ) - 100

= 3( x + y )2 - 2( x + y ) - 100

Với x + y = 5

=> P = 3.52 - 2.5 - 100 = 75 - 10 - 100 = -35

Q = x3 + y3 - 2x2 - 2y2 + 3xy( x + y ) - 4xy + 3( x + y ) + 10

= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3( x + y ) + 10

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 2x2 + 4xy + 2y2 ) + 3( x + y )

= ( x + y )3 - 2( x2 + 2xy + y2 ) + 3( x + y ) + 10

= ( x + y )3 - 2( x + y )2 + 3( x + y ) + 10

Với x + y = 5

=> Q = 53 - 2.52 + 3.5 + 10 = 100

5 tháng 9 2020

a. \(P=3x^2-2x+3y^2-2y+6xy-100\)

\(\Leftrightarrow P=\left(3x^2+6xy+3y^2\right)-\left(2x+2y\right)-100\)

\(\Leftrightarrow P=3\left(x+y\right)^2-2\left(x+y\right)-100\)

\(\Leftrightarrow P=3.5^2-2.5-100\)

\(\Leftrightarrow P=-35\)

b. \(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)

\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)

\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)

\(\Leftrightarrow Q=5^3-2.5^2+3.5+10\)

\(\Leftrightarrow Q=100\)

20 tháng 10 2021

Ta có: \(M=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+2=\left(x-2y\right)^2+\left(y-1\right)^2+2\)

Vì \(\left(x-2y\right)^2,\left(y-1\right)^2>0\)với mọi x,y nên M luôn dương

Ta có điều phải chứng minh