K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(Q=x^3+y^3+3xy\left(x+y\right)-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)\)

\(=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)\)

\(=5^3-2\cdot5^2+3\cdot5=125-50+15=90\)

`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`

`= 2xy`.

Thay `x = 2/3; y = -3/4` vào BT:

`2 . 2/3 . -3/4 = -1.`

`b, x(x-2y) - y(y^2-2x)`

`= x^2 - 2xy - y^3 + 2xy`

`= x^2 - y^3`

Thay `x = 5; y =3` vào BT:

`= 5^2 - 3^3 = 25 - 27 = -2`

22 tháng 7 2023

a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)

\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)

\(=2xy\)

Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:

\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)

b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)

\(=x^2-2xy-y^3+2xy\)

\(=x^2-y^3\)

Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)

6 tháng 8 2019

\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)

\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)

\(=3x^2+3y^2-2x^2+2xy-2y^2\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)

\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)

\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)

\(=x^2-xy+y^2+3xy\)

\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)

24 tháng 7 2018

\(x+y=1\)

\(\Leftrightarrow\)\(\left(x+y\right)^2=1\)

\(\Leftrightarrow\)\(x^2+y^2=1-2xy\)

\(x+y=1\)

\(\Leftrightarrow\)\(\left(x+y\right)^3=1\)

\(\Leftrightarrow\)\(x^3+y^3=1-3xy\)

\(H=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\left(xy+y\right)\)

\(=1-6x^2y^2+6x^2y^2\left(xy+y\right)\)

\(=1-6x^2y^2\left(1-xy-y\right)\)

\(=1-6x^2y^2\left(x+y-xy-y\right)\)

\(=1-6x^2y^2\left(x-xy\right)\)

\(=1-6x^3y^2\left(1-y\right)\)

\(=1-6x^3y^2\left(x+y-y\right)\)

\(=1-6x^4y^2\)

mới ra đc đến đây

                           

30 tháng 9 2017

P = 3x2 - 2x + 3y2 - 2y + 6xy - 100

= (3x2 + 6xy + 3y2) - (2x + 2y) - 100

= 3(x2 + 2xy + y2) - 2(x + y) - 100

= 3(x + y)2 - 2.5 - 100

= 3. 52 -10 - 100

= 75 - 10 - 100 = -35

Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10

= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10

= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10

= (x + y)3 - 2(x2 + 2xy + y2) + 25

= 53 - 2(x + y)2 +25

= 125 - 2. 52 + 25

= 125 - 50 + 25 = 100

29 tháng 6 2018

P = 3x2 - 2x + 3y2 - 2y + 6xy +2018

P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018

P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018

P = 3[ 52 +0] - 10 + 2018

P = 3.25 + 2008

P = 75 + 2008

P = 2083

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

27 tháng 6 2019

\(N=x^3+y^3+6x^2y^2\left(x+y\right)+3xy\left(x^2+y^2\right)\)

\(N=x^3+y^3+6x^2y^2+3xy\left[\left(x+y\right)^2-2xy\right]\)

\(N=\left(x+y\right)\left(x^2-xy+y^2\right)+6x^2y^2+3xy-6x^2y^2\)

\(N=x^2-xy+y^2+3xy\)

\(N=\left(x+y\right)^2\)

\(N=1\)

27 tháng 6 2019

\(x^3+y^3+6x^2y^2\left(x+y\right)+3xy\left(x^2+y^2\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+6x^2y^2\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]\)

\(=x^2-xy+y^2+6x^2y^2+3xy-6x^2y^2\)(  Do  \(x+y=1\))

\(=\left(x+y\right)^2-2xy-xy+3xy+6x^2y^2-6x^2y^3\)

\(=\left(x+y\right)^2=1^2=1\)