Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, = 3x^2y - 3xy + 6x^2y + 5xy - 9x^2y`
`= 2xy`.
Thay `x = 2/3; y = -3/4` vào BT:
`2 . 2/3 . -3/4 = -1.`
`b, x(x-2y) - y(y^2-2x)`
`= x^2 - 2xy - y^3 + 2xy`
`= x^2 - y^3`
Thay `x = 5; y =3` vào BT:
`= 5^2 - 3^3 = 25 - 27 = -2`
a) \(3x^2y-\left(3xy-6x^2y\right)+\left(5xy-9x^2y\right)\)
\(=3x^2y-3xy+6x^2y+5xy-9x^2y\)
\(=2xy\)
Thay \(x=\dfrac{2}{3},y=-\dfrac{3}{4}\) vào Bt ta có:
\(2\cdot\dfrac{2}{3}\cdot-\dfrac{3}{4}=-1\)
b) \(x\left(x-2y\right)-y\left(y^2-2x\right)\)
\(=x^2-2xy-y^3+2xy\)
\(=x^2-y^3\)
Thay \(x=5,y=3\) vào Bt ta có:
\(5^2-3^3=-3\)
\(A=3\left(x^2+y^2\right)-2\left(x^3+y^3\right)\)
\(=3x^2+3y^2-2\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3x^2+3y^2-2.1\left(x^2-xy+y^2\right)\)
\(=3x^2+3y^2-2x^2+2xy-2y^2\)
\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)
\(B=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(=x^3+y^3+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2.1\)
\(=x^3+y^3+3xy\left(x+y\right)^2-6x^2y^2+6x^2y^2\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2=1^2=1\)
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^2=1\)
\(\Leftrightarrow\)\(x^2+y^2=1-2xy\)
\(x+y=1\)
\(\Leftrightarrow\)\(\left(x+y\right)^3=1\)
\(\Leftrightarrow\)\(x^3+y^3=1-3xy\)
\(H=1-3xy+3xy\left(1-2xy\right)+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2+6x^2y^2\left(xy+y\right)\)
\(=1-6x^2y^2\left(1-xy-y\right)\)
\(=1-6x^2y^2\left(x+y-xy-y\right)\)
\(=1-6x^2y^2\left(x-xy\right)\)
\(=1-6x^3y^2\left(1-y\right)\)
\(=1-6x^3y^2\left(x+y-y\right)\)
\(=1-6x^4y^2\)
mới ra đc đến đây
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= (3x2 + 6xy + 3y2) - (2x + 2y) - 100
= 3(x2 + 2xy + y2) - 2(x + y) - 100
= 3(x + y)2 - 2.5 - 100
= 3. 52 -10 - 100
= 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10
= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10
= (x + y)3 - 2(x2 + 2xy + y2) + 25
= 53 - 2(x + y)2 +25
= 125 - 2. 52 + 25
= 125 - 50 + 25 = 100
P = 3x2 - 2x + 3y2 - 2y + 6xy +2018
P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018
P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018
P = 3[ 52 +0] - 10 + 2018
P = 3.25 + 2008
P = 75 + 2008
P = 2083
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
\(N=x^3+y^3+6x^2y^2\left(x+y\right)+3xy\left(x^2+y^2\right)\)
\(N=x^3+y^3+6x^2y^2+3xy\left[\left(x+y\right)^2-2xy\right]\)
\(N=\left(x+y\right)\left(x^2-xy+y^2\right)+6x^2y^2+3xy-6x^2y^2\)
\(N=x^2-xy+y^2+3xy\)
\(N=\left(x+y\right)^2\)
\(N=1\)
\(x^3+y^3+6x^2y^2\left(x+y\right)+3xy\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+6x^2y^2\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]\)
\(=x^2-xy+y^2+6x^2y^2+3xy-6x^2y^2\)( Do \(x+y=1\))
\(=\left(x+y\right)^2-2xy-xy+3xy+6x^2y^2-6x^2y^3\)
\(=\left(x+y\right)^2=1^2=1\)
\(Q=x^3+y^3+3xy\left(x+y\right)-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)\)
\(=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)\)
\(=5^3-2\cdot5^2+3\cdot5=125-50+15=90\)