K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

x - 4 = 2 => x = 2 + 4 => x = 6

x + y = 4 mà x = 6 => y = 4 - 6 => y = -2

=> xy = 6 \(\times\) (-2) = -12

x3 - y3 = 63 - (-2)3 = 224

21 tháng 8 2018

Ta có:\(x-4=2\Rightarrow x=6^{\left(1\right)}\)

Thay \(^{\left(1\right)}\) vào \(x+y=4\) ,ta được:

\(6+y=4\Rightarrow y=-2^{\left(2\right)}\)

Thay \(^{\left(1\right),\left(2\right)}\) vào xy ,ta được:

\(xy=6.\left(-2\right)=-12\)

thay \(^{\left(1\right),\left(2\right)}\) vào \(x^3-y^3\), ta được:

\(x^3-y^3=6^3-\left(-2\right)^3=216-\left(-8\right)=216+8=224\)

5 tháng 7 2021

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)^2-3xy=1+3=4\)

\(Q=2\left(x+y\right)\left(x^2-xy+y^2\right)-3\left(x^2+y^2\right)=-\left(x+y\right)^2=-1\)

 x^3 +y^3

=(x+y)^3

=1

Q=2(x^3 +y^3 )-3(x^2 +y^2)

=2(x+y)^3-3(x+y)^2

Thay x+y=1 vào đa thức Q có:

=2.1-3.1

=-1

21 tháng 8 2018

a,

\(x^2+y^2=\left(x+y\right)^2-2xy=1^2-2\cdot\left(-6\right)=1-\left(-12\right)=13\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=1\cdot\left[13-\left(-6\right)\right]=19\)

\(x^5+y^5=\left(x+y\right)\left(x^2+y^2\right)^2-\left(2x^3y^2+xy^4+x^4y+2x^2y^3\right)=169-\left[2\left(xy\right)^2\left(x+y\right)+xy\left(x^3+y^3\right)\right]=169-\left[2\cdot36\cdot1-6\cdot19\right]=211\)

21 tháng 8 2018

b,

\(x^2+y^2=\left(x-y\right)^2+2xy=1+12=13\)

\(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=1\cdot\left(13+6\right)=19\)

19 tháng 7 2019

Ta có : \(A=x^3y+xy^3=xy\left(x^2+y^2\right)=xy\left[\left(x+y\right)^2-2xy\right]\)

Thay x+y=3 và xy=1 vào ta có : \(A=3^2-2=7\)

Vậy A=7

19 tháng 7 2019

Ta có: \(A=x^3y+xy^3=xy\left(x^2+y^2\right)\)

              \(=xy\left[\left(x+y\right)^2-2xy\right]\)

Thay \(x+y=3\)và \(xy=1\)vào, ta đc:

\(A=3^2-2=7\)

Vậy ta tìm đc \(A=7\)

Rất vui vì giúp đc bạn !!!

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2

3 tháng 7 2017

a,Từ x + y = 2\(\Rightarrow\)x2 + 2xy + y2 = 4

\(\Rightarrow\)2xy= 4 - (x2 + y2 ) = 4 - 10 = -6

\(\Rightarrow\)xy = -3

Ta lại có (x+y)3= x3+3x2y + 3xy2+y3

\(\Rightarrow\)x3+y3=(x+y)3-3xy(x+y)=8+9.2=26

b, Đây là cách giải tổng quát của câu a:

x3+y3=(x+y)(x2-xy+y2)=a(b-xy) (1)

Lại có: x+y=a\(\Rightarrow\)x2+2xy+y2=a2

\(\Rightarrow\)xy=\(\dfrac{a^2-\left(x^2+y^2\right)}{2}=\dfrac{a^2-b}{2}\)(2)

Từ (1) và (2) ta dễ dàng tính được:

x3+y3=\(\dfrac{a\left(3b-a^2\right)}{2}\)

Chúc các bạn học tốtbanh

3 tháng 7 2017

a) x + y = 2 => y = 2 - x

x2 + y2 = 10

=> x2 + (2 - x)2 = 10

<=> x2 + 4 - 4x + x2 = 10

<=> 2x2 - 4x - 6 = 0

<=> x = 3 -> y = -1

hoặc x = -1 -> y = 3

TH1: x3 + y3 = 33 + (-1)3

TH2: x3 + y3 = (-1)3 + 33

Ta có:\(x^2+4y+4=0;y^2+4z+4=0;z^2+4x+4=0\)

\(\Leftrightarrow\left(x^2+4y+4\right)+\left(y^2+4z+4\right)+\left(z^2+4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4+y^2+4y+4+z^2+4z+4=0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2=0\)

\(\left(x+2\right)^2\ge0;\left(y+2\right)^2\ge0;\left(z+2\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y+2\right)^2+\left(z+2\right)^2\ge0\)

Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}x+2=0\\y+2=0\\z+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\\z=-2\end{cases}\Leftrightarrow}x=y=z=-2}\)

Vậy\(x^{10}+y^{10}+z^{10}=x^{10}+x^{10}+x^{10}\)                         

                    \(=3\cdot x^{10}=3\cdot\left(-2\right)^{10}=3\cdot1024=3072\)

3 tháng 7 2017

cho mk sửa lại đề chút nhoa:

b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b

3 tháng 7 2017

a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)

Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)

=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)

b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)

\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)

Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)

\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)