Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left|y-2018\right|+\left|2017-y\right|>=\left|-2018+2017\right|=1\)
Dấu '=' xảy ra khi (y-2018)(y-2017)<=0
=>2017<=y<=2018
\(M=\left(5x-3y+3xy+x^2y^2\right)-\left(\dfrac{1}{2}x+2xy-y+4x^2y^2\right)\)
\(=5x-3y+3xy+x^2y^2-\dfrac{1}{2}x-2xy+y-4x^2y^2\)
\(=\left(5x-\dfrac{1}{2}x\right)+\left(y-3y\right)+\left(3xy-2xy\right)+\left(x^2y^2-4x^2y^2\right)\) \(=4,5x-2y+xy-3x^2y^2\)
Thay \(x=1;y=-\dfrac{1}{2}\) vào ta có:
\(4,5x-2y+xy-3x^2y^2\)
\(=4,5.1-2.\left(-\dfrac{1}{2}\right)+1.\left(-\dfrac{1}{2}\right)-3.1^2.\left(-\dfrac{1}{2}\right)^2\)
\(=4,5+1-\dfrac{1}{2}-\dfrac{3}{4}\) \(=\dfrac{17}{4}\)
H(x) = x2017+ x = 0
=> x(x2016+1) = 0
=> x = 0
Hoặc : x2016+1=0 thì x2016= -1( khộng tính đựơc)
Nghiệm là 0
Đúng nha. Bạn yên tâm nha!!!!!
Tk mk nha √√√√. Chúc bạn học giỏi
Cho H(x)= \(x^{2017}+x=0\)
\(\Rightarrow x^{2017}=0\) và \(x=0\)
\(\hept{\begin{cases}x^{2017}=0\\x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=0\end{cases}}}\)
Vậy \(x=0\)là nghiệm của đa thức H(x)
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
a: a=xy=15
b=xy=15
b: y=15/x
x=15/y
c: Khi x=-20 thì y=15/x=-3/4
Khi x=10 thì y=15/x=3/2
d: Khi y=-20 thì x=15/y=-3/4
Khi y=10 thì x=15/y=3/2
linh nè. cho linh di linh giải cho
tớ hết lượt kết bạn rồi nên bn kết bn vs tớ nha