Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=x^3+y^3+9xy=\left(x+y\right)^3-3xy\left(x+y\right)+9xy=3^3-3xy.3+9xy=27-9xy+9xy=27\)
\(N=x^3+y^3+9xy\)
\(N=\left(x+y\right)^3-3xy\left(x-y\right)+9xy\)
\(N=\left(3^3\right)-3xy.3+9xy\)
\(N=27-9xy+9xy\)
\(N=27\)
Vậy N = 27
a) cho x+y=1. Tính giá trị biểu thức x^3+ y^3+ 3xy
b) cho x-y=1. Tính giá trị biểu thức x^3- y^3- 3xy
x^3+ y^3+ 3xy
=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2 -xy + y^2 + 3xy
=x^2 + 2xy + y^2
=(x+y)^2 =1
=> x^3+ y^3+ 3xy=1
13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))
1 = \(x^3\)+y3+3\(xy\)
13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)
b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))
1 = \(x^3\) - y3 - 3\(xy\)
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
Ta có:A = 2.(x-y)(x2 +xy +y2) - 3(x2 + 2xy + y2)
= 4 (x2 + xy + y2) - 3x2 - 6xy - 3y2
= 4x2 + 4xy + 4y2 - 3x2 - 6xy - 3y2
= x2 - 2xy + y2
= (x - y)2 = 22 = 4
\(N=\left(x+y\right)^3-3xy\left(x+y\right)+9xy\)
\(=3^3-3\cdot xy\cdot3+9xy=27\)