K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Áp dụng bất đẳng thức:

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|\)

\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge\left|3-1\right|\)

\(\Rightarrow\left|x+1\right|+\left|y-2\right|\ge2\)

Dấu "=" xảy ra khi:

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1\ge0\Rightarrow x\ge-1\\y-2\ge0\Rightarrow y\ge2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\y-2< 0\Rightarrow y< 2\end{matrix}\right.\end{matrix}\right.\)

Vậy các cặp \(x;y\) thỏa mãn là:

\(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

2 tháng 3 2017

ta thấy:  (x-1)^2 >hoặc =0

             (y+3)^2 >hoặc = 0

suy ra (x-1)^2+ (y+3)^2 > hoac = 0

suy ra (x-1)^2+ (y+3)^2+ 5 > hoặc = 5

Để M đạt giá trị nhỏ nhất khi và chỉ khi M=5

Vậy M đạt giá trị nhỏ nhất =5

31 tháng 1 2017

Ta có (x+1)^2\(\ge0với\forall x\)  (y+3)^2\(\ge0\)với\(\forall y\)(bình phương không âm)

=>B=(x+1)^2+(y+3)^2+1\(\ge1\)

31 tháng 1 2017

thanks bn nha !!!:D:D

24 tháng 12 2016

D bé nhất sẽ = 0

Nên biểu thức : " (8-x) /(x-3) " cũng có giá trị = 0

=> x=3 vì x-3 =0

Đ/s : 0

24 tháng 12 2016

à nhầm đáp số :3

3 tháng 9 2016

Ta có: (x + 1)2 \(\ge\)0 và (y - 2)2 \(\ge\) 0

=> (x + 1)2 + (y - 2)2 + 9  \(\ge\)9

Đẳng thức xảy ra khi: (x + 1)2 = 0 và (y - 2)2 = 0  => x = -1 và y = 2

Vậy giá trị nhỏ nhất của (x + 1)2 + (y - 2) + 9 là 9 khi x = -1 và y = 2

3 tháng 9 2016

\(A=\left(x+1\right)^2+\left(y-2\right)^2+9\)

Có: \(\left(x+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\left(x+1\right)^2+\left(y-2\right)^2+9\ge9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\) .

Vậy: \(Min_A=9\) tại \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

14 tháng 4 2017

NT:(2x+1)^4>=0.Dấu ''='' xảy ra khi x=-1/2

=>(2x+1)^4-1>=-1.Dấu"=" xẩy ra khi x=-1/2

Vậy Min của biểu thức trên là -1

a: \(\left(2x+1\right)^4-1\ge-1\)

Dấu '=' xảy ra khi x=-1/2

b: \(\left(x^2-16\right)^2+\left|y-3\right|-2\ge-2\)

Dấu '=' xảy ra khi \(\left(x,y\right)\in\left\{\left(4;3\right);\left(-4;3\right)\right\}\)

\(M=\left(3x-2y-1\right)^2+\left(1-0,125y\right)^2-3\ge-3\)

\(Min_M=-3\Leftrightarrow\hept{\begin{cases}3x-2y-1=0\\1-0,25y=0\end{cases}}\)

bạn tính y ở pt : 1- 0,125y = 0 rồi thế y vào pt 3x - 2y - 1 =0 để tìm x nha