Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}x^{2019}\le x^{2020}\\y^{2019}\le y^{2020}\end{cases}}\)
\(\Rightarrow x^{2019}+y^{2019}\le x^{2020}+y^{2020}\)
( em ko biết đúng hay sai làm theo cách hiểu của em thôi )
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của là sẽ tìm được nghiệm nguyên của
\(x^2+y^2=6\left(x-y-3\right)\)\(\Rightarrow x^2+y^2-6\left(x-y-3\right)=0\)
\(\Leftrightarrow x^2+y^2-6x+6y+18=0\)\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)(1)
Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
\(\Rightarrow M=3^{2019}+\left(-3\right)^{2019}+\left(3-3\right)^{2020}=0\)
\(Ta \) \(có : \) \(x ^2 + y^2 = 6. ( x - y - 3 )\)
\(\Leftrightarrow\)\(x^2 + y^2 - 6. ( x - y - 3 ) = 0\)
\(\Leftrightarrow\)\(x^2 + y^2 - 6x + 6y + 18 = 0\)
\(\Leftrightarrow\)\(( x^2 - 6x + 9 ) + ( y^2 + 6y + 9 ) = 0\)
\(\Leftrightarrow\)\(( x - 3 )^2 + ( y + 3 )^2 = 0\)
\(\Leftrightarrow\)\(( x - 3 )^2 = 0 \) \(và \) \(( y - 3 )^2 = 0\)
\(\Leftrightarrow\)\(x - 3 = 0 \) \(và \) \(y + 3 = 0\)
\(\Leftrightarrow\)\(x = 3 \) \(và \) \(y = - 3\)
\(Thay\) \(x = 3 ; y = - 3 \) \(vào \) \(M \)\(ta \) \(được :\)
\(M = 3\)\(2019\) \(+ (- 3 )\)\(2019\) \(+ [ 3 + ( - 3 ) ]\)\(2020\)
\(M = 0 \)
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
M+2019=2xy−yz−zx+2020M+2019=2xy−yz−zx+2020
=2xy−yz−zx+x2+y2+z2=2xy−yz−zx+x2+y2+z2
=(x+y−z2)2+3z24≥0=(x+y−z2)2+3z24≥0
⇒Mmin=0⇒Mmin=0 khi ⎧⎩⎨⎪⎪⎪⎪x+y−z2=03z24=0x2+y2+z2=2020{x+y−z2=03z24=0x2+y2+z2=2020
⇔⎧⎩⎨⎪⎪x+y=0z=0x2+y2=2020⇔{x+y=0z=0x2+y2=2020 ⇒⎧⎩⎨⎪⎪x=±1010−−−−√y=−xz=0