\(x^{2011}+y^{2011}\le x^{2012}+y^{2012}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Xét \(\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)\)

\(=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)\)

\(=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right)\) (do \(x-1=1-y\))

\(\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)\)

+ Giả sử \(x\ge y\Rightarrow x^{2011}\ge y^{2011}\) và \(x\ge1\ge y\)

Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)

+ Tương tự nếu \(y\ge x\Rightarrow y^{2011}\ge x^{2011}\) và \(y\ge1\ge x\)

Do đó \(\left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0\) (Đpcm)

Dấu "=" xảy ra khi \(x=y=1\)

27 tháng 12 2022

Xét \left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)(x2012+y2012)(x2011+y2011)

=x^{2011}\left(x-1\right)+y^{2011}\left(y-1\right)=x2011(x1)+y2011(y1)

=x^{2011}\left(1-y\right)+y^{2011}\left(y-1\right)=x2011(1y)+y2011(y1) (do x-1=1-yx1=1y)

\Leftrightarrow\left(x^{2012}+y^{2012}\right)-\left(x^{2011}+y^{2011}\right)=\left(1-y\right)\left(x^{2011}-y^{2011}\right)(x2012+y2012)(x2011+y2011)=(1y)(x2011y2011)

+ Giả sử x\ge y\Rightarrow x^{2011}\ge y^{2011}xyx2011y2011 và x\ge1\ge yx1y

Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0(1y)(x2011y2011)0 (Đpcm)

+ Tương tự nếu y\ge x\Rightarrow y^{2011}\ge x^{2011}yxy2011x2011 và y\ge1\ge xy1x

Do đó \left(1-y\right)\left(x^{2011}-y^{2011}\right)\ge0(1y)(x2011y2011)0 (Đpcm)

Dấu "=" xảy ra khi x=y=1x=y=1

 

NV
17 tháng 10 2019

Áp dụng BĐT Cauchy:

\(2011.x^{2012}+1\ge2012.x^{2011}\) ; \(2011y^{2012}+1\ge2012x^{2011}\)

\(\Rightarrow2011\left(x^{2012}+y^{2012}\right)\ge2011\left(x^{2011}+y^{2011}\right)+x^{2011}+y^{2011}-2\)

Mặt khác \(x^{2011}+2010\ge2011x\) ; \(y^{2011}+2010\ge2011y\)

\(\Rightarrow x^{2011}+y^{2011}\ge2011\left(x+y\right)-2010.2=2\)

\(\Rightarrow2011\left(x^{2012}+y^{2012}\right)\ge2011\left(x^{2011}+y^{2011}\right)\)

\(\Rightarrow x^{2012}+y^{2012}\ge x^{2011}+y^{2011}\)

Dấu "=" xảy ra khi \(x=y=1\)

8 tháng 3 2018

\(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\)

\(\Leftrightarrow\dfrac{x-3}{2011}+\dfrac{x-2}{2012}-2=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}-2\)

\(\Leftrightarrow\left(\dfrac{x-3}{2011}-1\right)+\left(\dfrac{x-2}{2012}-1\right)=\left(\dfrac{x-2012}{2}-1\right)+\left(\dfrac{x-2011}{3}-1\right)\)

\(\Leftrightarrow\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow x-2014=0\)

\(\Leftrightarrow x=0\)

8 tháng 3 2018

\(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\)

<=>\(\dfrac{x-3}{2011}-1+\dfrac{x-2}{2012}-1=\dfrac{x-2012}{2}-1+\dfrac{x-2011}{3}-1\)

<=>\(\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}=\dfrac{x-2014}{2}+\dfrac{x-2014}{3}\)

<=>\(\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\)

<=>\(\left(x-2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)

vì 1/2011+1/2012-1/2-1/3 khác 0

=>x-2014=0<=>x=2014

vậy....................

22 tháng 2 2019

1, \(\dfrac{x-3}{2011}+\dfrac{x-2}{2012}=\dfrac{x-2012}{2}+\dfrac{x-2011}{3}\\ \\ < =>\dfrac{x-3}{2011}-1+\dfrac{x-2}{2012}-1=\dfrac{x-2012}{2}-1+\dfrac{x-2011}{3}-1\\ \\ < =>\dfrac{x-2014}{2011}+\dfrac{x-2014}{2012}-\dfrac{x-2014}{2}-\dfrac{x-2014}{3}=0\\ \\ < =>\left(x-2014\right).\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\\ \\ < =>x-2014=0< =>x=2014\)

2, \(x^2+1=x\\ \\ < =>x^2-x+1=0\\ \\ < =>x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\\ \\ < =>\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)

có vế trái luôn dương, vế phải = 0 => vô nghiệm

13 tháng 12 2018

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\Leftrightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)

\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)

\(\Leftrightarrow x^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

vì \(a,b,c\ne0\Rightarrow\hept{\begin{cases}\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow x=y=z=0\Rightarrow P=0+\frac{11}{2011}=\frac{11}{2011}\)

13 tháng 2 2018

theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)

A=\(\dfrac{x-y}{x+y}\)

=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)

=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)

vì y>x>0=> A=-1/2