Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Chắc cái cuối là \(\frac{1}{a+b+c}\) chứ?
\(P\ge\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}-\frac{1}{9}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(P\ge\sum\left(a+\frac{8}{9a}\right)\)
Ta có đánh giá: \(a+\frac{8}{9a}\ge\frac{a^2+33}{18}\) \(\forall a\in\left(0;3\right)\)
Thật vậy, BĐT tương đương:
\(-a^3+18a^2-33a+16\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(16-a\right)\ge0\) (luôn đúng với \(a\in\left(0;3\right)\))
Thiết lập tương tự và cộng lại:
\(P\ge\frac{a^2+b^2+c^2+99}{18}=\frac{17}{3}\)
Áp dụng 2 bđt sau \(\hept{\begin{cases}a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\\\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\end{cases}}\)(tự chứng minh nhé)
\(A=\left(\frac{1}{x}+x\right)^2+\left(\frac{1}{y}+y\right)^2\ge\frac{\left(\frac{1}{x}+\frac{1}{y}+x+y\right)^2}{2}\ge\frac{\left(\frac{4}{x+y}+1\right)^2}{2}=\frac{\left(4+1\right)^2}{2}=\frac{25}{2}\)
Dấu "=" tại x = y = 1/2
1.\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{x^2.1000.1000}{x^2}}\)
\(\Rightarrow N\ge300\)
Dấu "=" xảy ra \(\Leftrightarrow x^3=1000\Leftrightarrow x=10\)
2.\(P=\left(5x+\frac{12}{x}\right)+\left(3y+\frac{16}{y}\right)\ge2\sqrt{60}+2\sqrt{48}=4\sqrt{15}+8\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow5x=\frac{12}{x};3y=\frac{16}{y}\Leftrightarrow x=\sqrt{\frac{12}{5}};y=\frac{4\sqrt{3}}{3}\)
\(\)
1.
Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
tương tự, ta có:
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)
Cộng theo vế của 3 BĐT trên, ta được:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\) (ĐPCM)
ý b nghĩ đã ~.~
2.
P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)
Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Ta có:
\(P=\frac{a^2}{x}+\frac{b^2}{y}\)
\(=\frac{a^2\left(x+y\right)}{x}+\frac{b^2\left(x+y\right)}{y}\)
\(=a^2+\frac{a^2y}{x}+b^2+\frac{b^2x}{y}\)
\(=a^2+b^2+\left(\frac{a^2y}{x}+\frac{b^2x}{y}\right)\)
Do \(\frac{a^2y}{x},\frac{b^2x}{y}\)có tích không đổi nên tổng chúng nhỏ nhất.
\(\Leftrightarrow\frac{a^2y}{x}=\frac{b^2x}{y}\)
\(\Leftrightarrow a^2y^2=b^2x^2\)
\(\Leftrightarrow ay=bx\)
\(\Leftrightarrow x=\frac{a}{a+b}\)
\(\Leftrightarrow y=\frac{b}{a+b}\)
Vậy \(P_{MIN}=\left(a+b\right)^2\Leftrightarrow x=\frac{a}{a+b},y=\frac{b}{a+b}\)
Áp dụng BĐT Cauchy-schwarz ta có:
\(R=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
=> x=...
y=...
KL:.....................
Forever Miss You ở đâu có cái tích ko đổi thì tổngnhỏ nhất hay thế?
Gửi link cho a đi~~