K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Bạn có thể làm cách sau tuy hơi dài

Lấy x=1-y thay vào P rồi phá ngoặc lẫn dấu ra.

Ta sẽ tìm được GTNN của P.

7 tháng 5 2016

Bài này hoàn toàn có thể giải bằng BĐT Cổ điển.

BĐT Cauchy-schwarz( Bunhiacopxki):

\(P\ge\frac{1}{2}.\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2\)

Việc còn lại không khó! :)

NV
16 tháng 4 2022

\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)

\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)

\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)

\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)

\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

6 tháng 5 2022

-Áp dụng BĐT AM-GM ta có:

\(xy\le\dfrac{\left(x+y\right)^2}{4}\Leftrightarrow xy\le\dfrac{2^2}{4}=1\)

\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\)

\(A=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2+2001=4x^2+4+\dfrac{1}{x^2}+4y^2+4+\dfrac{1}{y^2}+2001=4\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2009\ge4.2+2.\dfrac{1}{xy}+2009\ge8+2.\dfrac{1}{1}+2009=2019\)

\(A=2019\Leftrightarrow x=y=1\)

-Vậy \(A_{min}=2019\)

 

6 tháng 5 2022

-Do bài này có đk của x nên giải quyết cũng hơi mệt.

7 tháng 5 2018

4. x + y = 1

⇒ x = y - 1

Thế : x = y - 1 vào bài toán , ta có :

G = 2( y - 1)2 + y2

G = 2y2 - 4y + 2 + y2

G = 3y2 - 4y + 2

G = 3( y2 - 2.\(\dfrac{2}{3}\) + \(\dfrac{4}{9}\)) + 2 - \(\dfrac{4}{3}\)

G = 3( y - \(\dfrac{2}{3}\))2 + \(\dfrac{2}{3}\)\(\dfrac{2}{3}\) ∀x

⇒ GMIN = \(\dfrac{2}{3}\) ⇔ y = \(\dfrac{2}{3}\) ; x = 1 - \(\dfrac{2}{3}\) = \(\dfrac{1}{3}\)

Còn lại làm TT nhen...

7 tháng 5 2018

Ta có: x +y = 1

=> x = 1 - y

Thay vào ta được:

\(G=2\left(1-y\right)^2+y^2=2\left(1-2y+y^2\right)+y^2=2-4y+2y^2+y^2=2-4y+3y^2\)

\(=3y^2-4y+2=3\left(y^2-\dfrac{4}{3}y+\dfrac{2}{3}\right)=3\left(y^2-2.y.\dfrac{2}{3}+\dfrac{4}{9}+\dfrac{2}{9}\right)=3\left(y-\dfrac{2}{3}\right)^2+\dfrac{2}{3}\ge\dfrac{2}{3}\)

=> MinA = \(\dfrac{2}{3}\) khi y = \(\dfrac{2}{3}\)\(x=\dfrac{1}{3}\)

20 tháng 5 2021

x+y=k (k là hằng số > 0)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(P\ge\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\ge\frac{\left(2k+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2k+\frac{4}{k}\right)^2}{2}=\frac{\left(\frac{2k^2+4}{k}\right)^2}{2}\)

Đẳng thức xảy ra <=> x = y = k/2 

Vậy ... 

k bằng bao nhiêu bạn tự thay số nhé :c mình chỉ làm dàn vậy thôi :> 

16 tháng 4 2022

ko biết xin đừng vào trl

 

 

1)

ta có: x+2y=1 => x=1-2y

thay vào bt, ta có:

\(A=\left(1-2y\right)^2+2y^2=1-4y+4y^2+2y^2=6y^2-4y+1\\ A=6\left(x-\dfrac{4}{2.6}\right)^2+\dfrac{4.6.1-\left(-4\right)^2}{4a}\ge\dfrac{4.6.1-\left(-4\right)^2}{46}=\dfrac{1}{3}\)

A đạt min khi x-1/3=0 => x=1/3

vậy MIN A=1/3 tại x=1/3

10 tháng 4 2018

áp dụng bđt cô si cho 4 số ta có

\(x^4+\dfrac{1}{16}+\dfrac{1}{16}+\dfrac{1}{16}\ge4\sqrt[4]{x^4.\dfrac{1}{16}.\dfrac{1}{16}.\dfrac{1}{16}}\)

\(x^4+\dfrac{3}{16}\ge x.\dfrac{1}{2}\)

cmtt ta có

\(y^4+\dfrac{3}{16}\ge y\dfrac{1}{2}\)

cộng các vế của bđt trên ta có

\(x^4+y^4+\dfrac{3}{8}\ge\dfrac{1}{2}\left(x+y\right)\)

\(C+\dfrac{3}{8}\ge\dfrac{1}{2}\)

\(C\ge\dfrac{1}{8}\)

minC=\(\dfrac{1}{8}\) khi x=y=\(\dfrac{1}{2}\)

7 tháng 5 2017

khai triển ra còn 4x^2+4y^2+1/x^2+1/y^2+8 =4(x^2+y^2)+(1/x^2+1/y^2)+8

>/ 4.(x+y)^2/2+8/(x+y)^2+8=18

"=" khi x=y=1/2

7 tháng 5 2017

Đặt \(2x+\frac{1}{x}=a;2y+\frac{1}{y}=b\)

Ta có \(a^2+b^2>=2ab=>2\left(a^2+b^2\right)>=a^2+b^2+2ab=\left(a+b\right)^2\)

=>\(a^2+b^2>=\frac{\left(a+b\right)^2}{2}\)

Ta cần tìm giá trị nhỏ nhất của a+b

ta có \(a+b=2x+\frac{1}{x}+2y+\frac{1}{y}=2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}=2+\frac{1}{x}+\frac{1}{y}\)

Áp dụng BĐT cauchy \(\frac{1}{x}+\frac{1}{y}>=\frac{4}{x+y}\)

=>\(a+b>=2+\frac{4}{x+y}=6\)

=>a\(a^2+b^2>=\frac{6^2}{2}=18\)

=>Min \(\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)=18

Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)

10 tháng 5 2019

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2019

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18