K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
3 tháng 7 2019
Chọn C.
Phương pháp:
Tìm TXĐ của hàm số, sau đó tìm GTLN, GTNN của hàm số sau đó chọn đáp án đúng.
Cách giải:
CM
2 tháng 11 2019
Đáp án D
Phương pháp: Sử dụng phương pháp hàm số, tìm GTLN, GTNN của y = f(x) trên [a;b]
Bước 1: Tính f’(x) giải phương trình f’(x) = 0, tìm các nghiệm
Bước 2: Tính các giá trị
Bước 3: So sánh và kết luận
Cách giải:
y = x 4 - x 2
CM
1 tháng 1 2019
Chọn C.
f'(x) = 2xex + ex(x2 – 3) = 0
Ta có f(0) = -3
f(1) = -2e = m
f(2) = e2 = M
Suy ra (m2 – 4M)2016 = 0
CM
21 tháng 11 2017
Chọn đáp án B
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện.
\(A=\frac{1}{2}\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2=\frac{1}{2}\)
Min A= 1/2 khi x = y =1/2
Vì x+y=1
=>y=1-x
Ta có: \(A=x^2+y^2=x^2+\left(1-x\right)^2=x^2+1\left(1-x\right)-x\left(1-x\right)=x^2+1-x-x+x^2\)
\(A=2x^2-2x+1=2.\left(x^2-x+\frac{1}{2}\right)\)
\(A=2.\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+\frac{1}{2}\right)=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{1}{4}\right]\)
\(A=2\left[\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\right]=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(2\left(x-\frac{1}{2}\right)^2>=0\) với mọi x
=>\(2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>=\frac{1}{2}\) với mọi x
Dấu "=" xảy ra <=>\(x=\frac{1}{2}\);mà x+y=1=>\(y=\frac{1}{2}\)
Khi đó GTNN của A=x2+y2 là 1/2 tại \(x=y=\frac{1}{2}\)