K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

Đây nhé! Tích giúp c nhaundefined

26 tháng 7 2021

batngo

1: Ta có: \(a^2+b^2+c^2\)

\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)

\(=5^2-2\cdot174=-323\)

18 tháng 7 2016

giúp e vs ạ

8 tháng 8 2016

Ta có:  a +b +c = 0:

=> (a + b + c)2 = 0 
=> a² + b² + c² + 2(ab + bc + ca) = 0 
=> a² + b² + c² = -2(ab + bc + ca)    (1

Mặt khác:

a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²)    (cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

=> [-2(ab + bc + ca)]2 = 4(a²b² + b²c² + c²a²)  ( do (1) ) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> ĐPCM.hihi

AH
Akai Haruma
Giáo viên
30 tháng 3 2021

Lời giải:

Kiểu như bạn muốn biến đổi $a^4-b^4$ về dạng có liên quan đến $a+b,ab$ ấy hả?

$a^4-b^4=(a^2-b^2)(a^2+b^2)=(a-b)(a+b)[(a+b)^2-2ab]$

Nếu $a^4\geq b^4$ thì: $a^4-b^4=\sqrt{(a-b)^2}(a+b)[(a+b)^2-2ab]$

$=\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$

Nếu $a^4< b^4$ thì $a^4-b^4=-\sqrt{(a+b)^2-4ab}(a+b)[(a+b)^2-2ab]$