K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

Câu sau thì min của nó cũng là \(\frac{5}{2}\)và cũng đạt được khi x = y = 1 luôn đấy

4 tháng 11 2016

đề bà có cho a;b > 0 ko bạn
 

1 tháng 11 2019

Sao đã có x,y>0 lại có x+y=0 vậy bạn

30 tháng 7 2020

Ta có: \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

\(\ge\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{\left(x+y\right)^2}{2}}=\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}\)

\(=\frac{6}{\left(x+y\right)^2}=6\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

30 tháng 7 2020

Bài làm:

Ta có: \(x+y\ge2\sqrt{xy}\)(bất đẳng thức Cauchy)

\(\Leftrightarrow\sqrt{xy}\le\frac{x+y}{2}\)

\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Áp dụng bất đẳng thức Cauchy Schwars ta được:

\(A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)

\(\ge\frac{\left(1+1\right)^2}{x^2+2xy+y^2}+\frac{1}{2.\frac{1}{4}}=\frac{4}{\left(x+y\right)^2}+\frac{1}{\frac{1}{2}}\)

\(=\frac{4}{1^2}+2=6\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

17 tháng 12 2017

Áp dụng 2 bđt đó là : 1/a+1/b+1/c >= 9/a+b+c và ab+bc+ca <= a^2+b^2+c^2

A >= 9/6+xy+yz+zx >= 9/6+x^2+y^2+z^2 = 9/6+3 = 2

Dấu "=" xảy ra <=> x=y=z=1

Vậy Min A = 1 <=> x=y=z=1

k mk nha

23 tháng 12 2017

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)

Vì x + y = 1 nên A = 1 - 2xy

Áp dụng btt co-si ta có:

\(xy\le\left(x+y\right)^{\frac{2}{4}}=\frac{1}{4}\)

\(\Rightarrow A\ge1-\frac{1}{2}=\frac{1}{2}.GTNN_A=\frac{1}{2}\)

8 tháng 1 2019

Áp dụng BĐT AM-GM ta có:

\(1=\frac{3}{x}+\frac{2}{y}\ge2.\sqrt{\frac{6}{xy}}\)

\(\Leftrightarrow1^2\ge4.\frac{6}{xy}\)

\(\Leftrightarrow1\ge\frac{24}{xy}\)

\(\Leftrightarrow xy\ge24\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{3}{x}=\frac{2}{y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)

Vậy \(xy_{min}=24\Leftrightarrow\hept{\begin{cases}x=6\\y=4\end{cases}}\)

8 tháng 1 2019

T nghĩ ra câu b rồi nhé Pain,bớt xạo lz!

b) Từ \(\frac{3}{x}+\frac{2}{y}=1\),ta có: \(x+y=1\left(x+y\right)=\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\)

Áp dụng BĐT Bunhiacopxki,ta có: \(\left(\frac{3}{x}+\frac{2}{y}\right)\left(x+y\right)\ge\left(\sqrt{\frac{3}{x}.x}+\sqrt{\frac{2}{y}.y}\right)\)

\(=\left(\sqrt{3}+\sqrt{2}\right)^2=5+2\sqrt{6}\)

Vậy \(Min_{x+y}=5+2\sqrt{6}\Leftrightarrow\hept{\begin{cases}x=3+\sqrt{6}\\y=2+\sqrt{6}\end{cases}}\)