\(x^3+y^3+xy\).

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

\(A=\left(x+y\right)^3-3xy\left(x+y\right)+xy\)

Vì x + y = 1 nên A = 1 - 2xy

Áp dụng btt co-si ta có:

\(xy\le\left(x+y\right)^{\frac{2}{4}}=\frac{1}{4}\)

\(\Rightarrow A\ge1-\frac{1}{2}=\frac{1}{2}.GTNN_A=\frac{1}{2}\)

26 tháng 10 2017

bạn nào đúng mk k nha okay!!!

10 tháng 12 2017

minh giong vu the qang huy

17 tháng 12 2018

\(x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

... 

6 tháng 11 2016

Câu sau thì min của nó cũng là \(\frac{5}{2}\)và cũng đạt được khi x = y = 1 luôn đấy

4 tháng 11 2016

đề bà có cho a;b > 0 ko bạn
 

17 tháng 12 2017

Áp dụng 2 bđt đó là : 1/a+1/b+1/c >= 9/a+b+c và ab+bc+ca <= a^2+b^2+c^2

A >= 9/6+xy+yz+zx >= 9/6+x^2+y^2+z^2 = 9/6+3 = 2

Dấu "=" xảy ra <=> x=y=z=1

Vậy Min A = 1 <=> x=y=z=1

k mk nha

1 tháng 11 2019

Sao đã có x,y>0 lại có x+y=0 vậy bạn

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)