Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) \(A=\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\)
\(=2\left(x^2-xy+y^2\right)+2xy\)
\(=2\left(x^2+y^2\right)\ge\left(x+y\right)^2=4\)(BĐT Bunhiacopxki)
=> A \(\ge4\)Dấu "=" xảy ra <=> x=y=1
Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0
--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0
--> (x+y+2)^2 + y^2 = 1
-->(x+y+2)^2 <= 1 ( vì y^2 >=1)
--> -1 <= x+y+2 <=1
--> 2015 <= x+y+2018 <= 2017
hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3
Q<=2017, dau bang xay ra khi x+y+2=1 --> x+y=-1
Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3
giá trị lớn nhất của Q là 2017 khi x+y=-1
1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)
=\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)
=\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1
Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1
2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)
=\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)
Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)
\(A=4x^2+y^2+xy+4x+2y+3=4x^2+x\left(y+4\right)+\frac{\left(y+4\right)^2}{16}+y^2-\frac{\left(y+4\right)^2}{16}+2y+3\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{16y^2-y^2-8y-16+32y+48}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15y^2+24y+32}{16}\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y^2+\frac{24}{15}y+\frac{16}{25}\right)+\frac{112}{5}}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y+\frac{4}{5}\right)^2+\frac{112}{5}}{16}\ge\frac{\frac{112}{5}}{16}=\frac{7}{5}\)Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+\frac{y+4}{4}=0\\y+\frac{4}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)
\(B=-x^2-y^2-2xy=-\left(x+y\right)^2\le0\)
Đẳng thức xảy ra khi x = -y
\(x^2+2xy+4x+4y+3y^2+3=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)
\(\Leftrightarrow-1\le x+y+2\le1\)
\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)
\(\Leftrightarrow2014\le x+y+2017\le2016\)
Hay \(2014\le B\le2016\)
a)\(x^2+y^2>=\frac{\left(x+y\right)^2}{2}=2\)(tự cm : nhân chéo chuyển vế hoặc ghi áp dụng BĐT Bunhiacopxki đều được)
=>Min M=2
Dấu "=" xảy ra khi x=y=1
b)x-2y=3
=>x=2y+3
=>\(N=x^2-5y^2=\left(2y+3\right)^2-5y^2=-y^2+12y+9=-\left(y^2-12y+36\right)+45\)
\(N=-\left(y-6\right)^2+45< =45\)
=>Max N=45
Dấu = xảy khi \(\hept{\begin{cases}y-6=0\\x=2y+3\end{cases}< =>\hept{\begin{cases}y=6\\x=15\end{cases}}}\)
1/ B = (x+y)((x+y)2 - 3xy)+(x+y)2 - 2xy = 2 - 5xy = 2 - 5x(1-x)=5x2 - 5x + 2 = (x√5 - √5 /2)2 +3/4 >= 3/4
Đạt GTNN là 3/4 khi x=y=1/2
2/ P = xy = x(6-x)=-x2 +6x = 9 - (x-3)2 <=9
GTLN là 9 khi x=y=3
Lời giải:
$M=x^3+y^3+2xy=(x+y)(x^2-xy+y^2)+2xy=x^2-xy+y^2+2xy$
$=x^2+y^2+xy=\frac{1}{4}(x-y)^2+\frac{3}{4}(x+y)^2=\frac{1}{4}(x-y)^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$. Giá trị này đạt được khi $x=y=\frac{1}{2}$