Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{y}{\sqrt{x+y}-\sqrt{x-y}}< \frac{z}{\sqrt{x+z}-\sqrt{x-z}}\) (1)
<=> \(\frac{y\left(\sqrt{x+y}+\sqrt{x-y}\right)}{\left(x+y\right)-\left(x-y\right)}< \frac{z\left(\sqrt{x+z}+\sqrt{x-z}\right)}{\left(x+z\right)-\left(x-z\right)}\)
<=> \(\frac{\sqrt{x+y}+\sqrt{x-y}}{2}< \frac{\sqrt{x+z}+\sqrt{x-z}}{2}\)
<=> \(\sqrt{x+y}+\sqrt{x-y}< \sqrt{x+z}+\sqrt{x-z}\)
<=> \(2x+2\sqrt{x^2-y^2}< 2x+2\sqrt{x^2-z^2}\)
<=> \(y^2>z^2\) luôn đúng vì x > y > z > 0
Vậy (1) đúng với x > y > z > 0.
\(x^3+3x^2+3x+1+y^3+3y^3+3y+1+x+y+2=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+x+y+2=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+1\right)^2+\left(y+1\right)^2-\left(x+1\right)\left(y+1\right)+1\right)=0\)
\(\Leftrightarrow x+y+2=0\)
(phần trong ngoặc \(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\frac{\left(y+1\right)^2}{4}+\frac{3\left(y+1\right)^2}{4}+1\)
\(=\left(x+1-\frac{y+1}{4}\right)^2+\frac{3\left(y+1\right)^2}{4}+1\) luôn dương)
\(\Rightarrow x+y=-2\)
Mà \(xy>0\Rightarrow\left\{{}\begin{matrix}x< 0\\y< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x>0\\-y>0\end{matrix}\right.\)
Ta có: \(\frac{1}{-x}+\frac{1}{-y}\ge\frac{4}{-\left(x+y\right)}=2\) \(\Leftrightarrow\frac{1}{x}+\frac{1}{y}\le-2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=y=-1\)
2/ \(x;y;z\ne0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{xz+yz+z^2}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{xy+yz+xz+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\) dù trường hợp nào thì thay vào ta đều có \(B=0\)
3/ \(\Leftrightarrow mx-2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)-\left(2x+y+1\right)=0\)
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà d đi qua
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0=0\\2x_0+y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=1\end{matrix}\right.\)
Vậy d luôn đi qua \(A\left(-1;1\right)\) với mọi m
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
Bài 3:
Xét họ đường cong \(\left(C_m\right):y=f_m\left(x\right)=mx^4\) và các đường thẳng \(d_m:y=k_mx+n_m\),
với \(x\in\left(0;3\right)\) và \(m=1,2,3\)
Điều kiện \(\left(C_m\right)\) tiếp xúc với \(d_m\) là
\(\begin{cases}mx^4=k_mx+n_m\\4mx^3=k_m\end{cases}\)\(,m=1,2,3\)
Ta cần chọn x1,x2,x3 thỏa mãn
\(\begin{cases}k_1=4x_1^3;k_1=k_2=k_3=k\\k_2=8x_2^3\\k_3=12x_3^3\\x_1+x_2+x_3=3\end{cases}\)\(\Rightarrow\begin{cases}x^3_1=2x^3_2=3x^3_3\\x_1+x_2+x_3=3\end{cases}\)
\(\Rightarrow\begin{cases}x_1=\frac{3\sqrt[3]{6}}{\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}}\\x_2=\frac{x_1}{\sqrt[3]{2}}\\x_3=\frac{x_1}{\sqrt[3]{3}}\end{cases}\).Suy ra \(k=4x_1^3=\frac{648}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)
\(n_1+n_2+n_3=-3x_1^4\left(1+\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}\right)=-\frac{1458}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)
Mặt khác: \(f_m^n\left(x\right)=12mx^2>0,\forall x\in\left(0;3\right)\),suy ra \(f_m\left(x\right)\) là hàm lồi trên khoảng \(\left(0;3\right)\).
Do đó, trên khoảng (0;3) đường cong \(\left(C_m\right)\) không nằm phía dưới tiếp tuyến \(\left(d_m\right)\),tức là \(f_m\left(x\right)\ge g_m\left(x\right),\forall x\in\left(0;3\right)\) (*)
Từ hệ thức (*),ta có:
\(a^4\ge ka+n_1\)
\(2b^4\ge kb+n_2\)
\(3c^4\ge kc+n_3\)
Cộng theo vế ta có:
\(P\ge k\left(a+b+c\right)+n_1+n_2+n_3\)
\(=3k+n_1+n_2+n_3\)
\(=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\)
Vậy GTNN của \(P=\frac{486}{\left(\sqrt[3]{2}+\sqrt[3]{3}+\sqrt[3]{6}\right)^3}\) khi \(a=x_1;b=x_2;c=x_3\)
2/ Áp dụng BĐT BCS : \(25=\left(\sqrt{x}.\sqrt{x^3}+\sqrt{y}.\sqrt{y^3}\right)^2\le\left(x+y\right)\left(x^3+y^3\right)\)
\(\le\sqrt{2\left(x^2+y^2\right)}.\left(x^3+y^3\right)\)
\(\Rightarrow x^3+y^3\ge\frac{25}{\sqrt{2.5}}=\frac{5\sqrt{10}}{2}\)
Đẳng thức xảy ra khi \(\begin{cases}\frac{\sqrt{x}}{\sqrt{x^3}}=\frac{\sqrt{y}}{\sqrt{y^3}}\\x=y\\x^2+y^2=5\end{cases}\) \(\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)
Vậy MinP = \(\frac{5\sqrt{10}}{2}\Leftrightarrow x=y=\frac{\sqrt{10}}{2}\)
b2
tổng x = 23
link mk giải nè
https://maytinhbotui.vn/Forums/Topic/giai-phuong-trinh-2-an-bang-may-tinh-casio
Câu 1:
\(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)
=>a+12=0
hay a=-12
Câu 2;
Để A là số nguyên thì \(\left(x+2\right)⋮x^2+4\)
\(\Leftrightarrow x^2-4⋮x^2+4\)
\(\Leftrightarrow x^2+4-8⋮x^2+4\)
\(\Leftrightarrow x^2+4\in\left\{4;8\right\}\)
hay \(x\in\left\{0;2;-2\right\}\)