Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
\(x+\frac{1}{(x-y).y}=(x-y)+y+\frac{1}{(x-y).y}\geq 3\sqrt[3]{(x-y).y.\frac{1}{(x-y).y}}=3\)
Ta có đpcm.
Dấu "=" xảy ra khi \(x-y=y=\frac{1}{(x-y).y}\) hay $x=2; y=1$
Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.
Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!
Áp dụng BĐT Cauchy, ta có:
\(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)
\(\Rightarrow VT\ge\frac{2}{xy}+\frac{1}{x^2+y^2}\)
\(\Leftrightarrow VT\ge\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)+\frac{3}{2xy}\)
\(\Rightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{3}{\frac{\left(x+y\right)^2}{2}}\)
\(\Leftrightarrow VT\ge\frac{4}{\left(x+y\right)^2}+\frac{6}{\left(x+y\right)^2}=\frac{10}{\left(x+y\right)^2}\)
Dấu = xảy ra khi \(x=y>0\)
Vậy \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{x^2+y^2}\ge\frac{10}{\left(x+y\right)^2}\) với \(\forall x;y>0\)
Áp dụng BĐT AM-GM ta có:
\(x+y+z\ge3\sqrt[3]{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\)
Nhân theo vế 2 BĐT trên ta có:
\(VT\ge3^2\cdot\sqrt[3]{xyz\cdot\frac{1}{xyz}}=9=VP\)
Xảy ra khi \(a=b=c\)
Chứng minh bất đẳng thức sau:\(\frac{x}{y}\) + \(\frac{y}{x}\)lớn hơn hoặc bằng 2( với x,y cùng dấu)
Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)
Ta có:
\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)
Dấu = xảy ra khi x = y # 0
Với x,y,z > 0
Xét : (1/x + 1/y + 1/z).(x+y+z)
>=3 \(\sqrt[3]{\frac{1}{xyz}}\). 3\(\sqrt[3]{xyz}\) = 9
=> 1/x + 1/y + 1/z >= 9/x+y+z = 9/1 = 9
=> ĐPCM
Dấu "=" xảy ra <=> x=y=z=1/3
Tk mk nha
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng với a, b, c dương)
Áp dụng BĐT trên ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)
Ta có:
\(\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4.\frac{x}{y}.\frac{y}{x}\)
\(=\left(\frac{x}{y}-\frac{y}{x}\right)^2+4\ge4\) với mọi x y >0
Vì x, y >0 => \(\frac{x}{y}+\frac{y}{x}>0\) mà \(\left(\frac{x}{y}+\frac{y}{x}\right)^2\ge4\)
=> \(\frac{x}{y}+\frac{y}{x}\ge2>\frac{1}{2}\)với mọi x, y >0
"=" xảy ra <=> x =y
Em kiểm tra lại đề bài nha.