Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng
Ta có:
\(M=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)
\(=\left(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\right)+\frac{5}{8}.\frac{2x+y}{2}\)
Có: \(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\ge2\sqrt{\frac{3}{8}.\frac{2x+y}{2}.\frac{3}{2x+y}}=\frac{3}{2}\)
Dấu '=' xảy ra <=> \(\frac{3}{8}.\frac{2x+y}{2}=\frac{3}{2x+y}\)
Có: \(\frac{5}{8}.\frac{2x+y}{2}\ge\frac{5}{8}\sqrt{2xy}=\frac{5}{4}\)
Dấu '=' xảy ra <=> 2x=y và xy=2
Do đó \(M\ge\frac{3}{2}+\frac{5}{4}=\frac{11}{4}\)
Dấu '=' xảy ra <=> x=1 và y=2
Vậy GTNN của M là 11/4 khi x=1 và y=2
@AZM: Thật không may dấu "=" không xảy ra bạn nhé :))
Ta có:\(S=\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\)
Đặt \(a=\frac{x^2+y^2}{xy}\ge\frac{2\sqrt{x^2y^2}}{xy}=2\)
Khi đó:\(S=a+\frac{1}{a}=\left(\frac{a}{4}+\frac{1}{a}\right)+\frac{3a}{4}\ge2\sqrt{\frac{a}{4}\cdot\frac{1}{a}}+\frac{3\cdot2}{4}=\frac{5}{2}\)
Đẳng thức xảy ra tại x=y
Bài làm:
Ta có: \(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}=\frac{x^2+y^2}{xy}+\frac{xy}{x^2+y^2}\ge2\sqrt{\frac{\left(x^2+y^2\right)}{xy}.\frac{xy}{\left(x^2+y^2\right)}}=2.1=2\)
Dấu "=" xảy ra khi: \(x=y\)
Vậy GTNN biểu thức là 2 khi \(x=y\)
Học tốt!!!!
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
Ta có:
\(P=\frac{1}{x+y}+\frac{xy+x+y}{x}+\frac{xy+x+y}{y}=\frac{1}{x+y}+1+\frac{y}{x}+y+1+\frac{x}{y}+x\)
\(=\frac{1}{x+y}+\left(x+y\right)+2+\left(\frac{x}{y}+\frac{y}{x}\right)\ge2+2+2=6\)
DẤU BẰNG XẢY RA:\(\Leftrightarrow x=y=\sqrt{2}-1\)
Lời giải:
Áp dụng BĐT Cauchy cho các số dương:
\(x^2+1\geq 2x\); \(y^2+1\geq 2y\)
\(\Rightarrow M=x^2+y^2+\frac{3}{x+y+1}\geq 2x+2y-2+\frac{3}{x+y+1}\)
hay \(M\geq \frac{5}{3}(x+y)-\frac{7}{3}+\frac{x+y+1}{3}+\frac{3}{x+y+1}\)
Tiếp tục áp dụng BĐT Cauchy:
\(\frac{x+y+1}{3}+\frac{3}{x+y+1}\geq 2\)
\(x+y\geq 2\sqrt{xy}=2\)
Do đó: \(M\geq \frac{5}{3}.2-\frac{7}{3}+2=3\)
Vậy GTNN của $M$ là $3$. Dấu "=" xảy ra khi $x=y=1$