K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Biết trước điểm rơi rồi thì quá EZ.

\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)

\(\ge13\)

Dấu "=" xảy ra tại a=2;b=3;c=4

31 tháng 5 2018

Ta có: \(P=\frac{4}{x}+\frac{9}{y}+\frac{16}{z}=\frac{2^2}{x}+\frac{3^2}{y}+\frac{4^2}{z}\)

Áp dụng bất đẳng thức Swarchz cho 3 số:

\(\Rightarrow P\ge\frac{\left(2+3+4\right)^2}{x+y+z}=\frac{81}{x+y+z}\)

Thay \(x+y+z=6\Rightarrow P\ge\frac{81}{6}=\frac{27}{2}\)

\(\Rightarrow Min_P=\frac{27}{2}.\)Dấu "=" xảy ra khi \(x=y=z=2\).

31 tháng 5 2018

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{4}{3};y=2;z=\frac{8}{3}\)

21 tháng 11 2015

Áp dụng bất đẳng thức Cosi, ta có: 
1/x + 36x ≥ 2.√(1/x . 36x) = 12 (đẳng thức xảy ra khi 1/x = 36x hay x = 1/6) (1)
4/y + 36y ≥ 24 (đẳng thức xảy ra khi 4/y = 36y hay y = 1/3) (2)
9/z + 36z ≥ 36 (đẳng thức xảy ra khi 9/z = 36z hay z = 1/2) (3)
Cộng vế 3 bất đẳng thức (1),(2),(3) lại được: 
1/x + 4/y + 9/z + 36(x + y + z) ≥ 12+24+36=72
<=> 1/x + 4/y + 9/z ≥ 72 - 36(x + y + z) = 36 (vì x + y + z = 1) 
Vậy GTNN S = 36 khi x = 1/6; y = 1/3; z = 1/2

Đúng thì tick nhé !

17 tháng 11 2017

mk ko bt

DD
5 tháng 9 2021

\(A=3x+4y+\frac{5}{x}+\frac{9}{y}=\frac{5}{4}x+\frac{5}{x}+\frac{9}{4}y+\frac{9}{y}+\frac{7}{4}x+\frac{7}{4}y\)

\(\ge2\sqrt{\frac{5}{4}x.\frac{5}{x}}+2\sqrt{\frac{9}{4}y.\frac{9}{y}}+\frac{7}{4}.4\)

\(=5+9+7=21\)

Dấu \(=\)khi \(x=y=2\).

2 tháng 6 2015

Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:

\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)

\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)

Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)

=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)

Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)

Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1

 

12 tháng 12 2018

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

12 tháng 12 2018

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

11 tháng 3 2020
https://i.imgur.com/a5MICIu.jpg
11 tháng 3 2020
https://i.imgur.com/sVPoc2B.jpg
22 tháng 12 2016

Có vẻ đề thiếu.

22 tháng 12 2016

Thiếu x+y+z= 1.. Xl  có lẽ mk nhìn nhầm

15 tháng 12 2015

Ai tick mik vài cái cho tròn 170 với

15 tháng 12 2015

haizz

kho wa