Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=5x+3y+12/x+16/y
=3x+12/x+y+16/y+2(x+y)
áp dụng cosi: 3x+12/x>=2√(3.12)=12
y+16/y>=8
lại có 2(x+y)>=2.6=12
nên
P>=12+8+12=32
dấu = khi 3x=12/x và y=16/y và x+y=6
==> x=2; y=4
giá trị nhỏ nhất P=32 khi x=2; y=4
Ta có: \(x+y\ge6\Rightarrow x\ge6-y\)
Vậy GTNN của x là 6 - y.
Thay 6 - y vào biểu thức đã rút gọn có:
\(A=-2y^3+42y^2-176y-96\)
Giả sử y = 0, ,=> P = -232
Do y > 0 nên P > -232
Vậy: \(Min_P=-232\)
Bn đăng bài lên xong nói mình làm được r thế đăng lên làm gì vậy bạn?
Lời giải:
Thực hiện tách P:
\(P=5x+3y+\frac{12}{x}+\frac{16}{y}\)
\(P=2(x+y)+\left(3x+\frac{12}{x}\right)+\left(y+\frac{16}{y}\right)\)
Theo đề bài: \(x+y\geq 6\Rightarrow 2(x+y)\geq 12\)
Áp dụng BĐT AM-GM ta có:
\(3x+\frac{12}{x}\geq 2\sqrt{3x.\frac{12}{x}}=12\)
\(y+\frac{16}{y}\geq 2\sqrt{y.\frac{16}{y}}=8\)
Do đó: \(P\geq 12+12+8=32\)
Vậy GTNN của \(P=32\Leftrightarrow (x,y)=(2,4)\)
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự