Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:
\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)
\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)
Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)
=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)
Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)
Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1
Cho x > 0; y > 0 và 2x+3y < hoặc = 2. Tìm gtnn của biếu thức:
A =\(\frac{4}{4x^2+9y^2}+\frac{9}{xy}\)
Đặt \(\hept{\begin{cases}2x=a\left(a>0\right)\\3y=b\left(b>0\right)\end{cases}}\)
\(\Rightarrow2x+3y=a+b\le2,x.y=\frac{ab}{6}\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{9}{\frac{ab}{6}}=\frac{4}{a^2+b^2}\ne\frac{54}{ab}\)
Vì \(a>0,b>0\)
Nên áp dụng BĐT cô-si ta có:\(a+b\ge2\sqrt{ab}\)
Mà \(a+b\le2\Rightarrow2\sqrt{ab}\le2\Rightarrow\sqrt{ab}\le1\Rightarrow ab\le1\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)với x > 0 , y > 0
\(\Rightarrow\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge1\)
\(\Rightarrow\frac{4}{a^2+b^2}+\frac{4}{2ab}\ge4\)
\(\Rightarrow P=\frac{4}{a^2+b^2}+\frac{4}{2ab}+\frac{52}{ab}\)
\(P\ge4+52=56\)
\(\Rightarrow MinP=56\Leftrightarrow\hept{\begin{cases}a=b\\a+b=2\\a.b=1\end{cases}}\Leftrightarrow\hept{a=b=1\Leftrightarrow2x=3y=1\Leftrightarrow x=\frac{1}{2},y=\frac{1}{3}}\)
\(1=x^2+\frac{4}{y^2}\ge2\sqrt{\frac{4x^2}{y^2}}=\frac{4x}{y}\Rightarrow\frac{x}{y}\le\frac{1}{4}\)
Đặt \(\frac{x}{y}=t\Rightarrow0< t\le\frac{1}{4}\)
\(M=3t+\frac{1}{2t}=3t+\frac{3}{16t}+\frac{5}{16t}\ge2\sqrt{\frac{9t}{16t}}+\frac{5}{16.\frac{1}{4}}=\frac{11}{4}\)
Dấu "=" xảy ra khi \(t=\frac{1}{4}\) hay \(\left\{{}\begin{matrix}x=\frac{\sqrt{2}}{2}\\y=2\sqrt{2}\end{matrix}\right.\)
\(A=\frac{3x}{4}+\frac{1}{x}+\frac{2}{y^2}+y=\frac{x}{4}+\frac{1}{x}++\frac{2}{y^2}+\frac{y}{4}+\frac{y}{4}+\frac{x}{2}+\frac{y}{2}\)
\(\Rightarrow A\ge2\sqrt{\frac{x}{4}.\frac{1}{x}}+3\sqrt[3]{\frac{2}{y^2}.\frac{y}{4}.\frac{y}{4}}+\frac{1}{2}\left(x+y\right)=1+\frac{3}{2}+2=\frac{9}{2}\)
\(\Rightarrow A_{min}=\frac{9}{2}\) khi \(x=y=2\)