\(M=\frac{20}{x^2+y^{^2}}+\frac{11}{xy}\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

\(M=\frac{20}{x^2+y^2}+\frac{11}{xy}=\frac{20}{x^2+y^2}+\frac{22}{2xy}=\frac{20}{x^2+y^2}+\frac{20}{2xy}+\frac{2}{2xy}\)

\(=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}>=20\cdot\frac{4}{x^2+2xy+y^2}+\frac{4}{\left(x+y\right)^2}\)

\(=\frac{80}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}=\frac{84}{\left(x+y\right)^2}>=\frac{84}{2^2}=\frac{84}{4}=21\)

dấu = xảy ra khi \(\hept{\begin{cases}x+y=2\\x=y\end{cases}\Rightarrow x=y=1}\)

vậy min M là 21 khi x=y=1

4 tháng 7 2020

Bạn có thể tham khảo ở đây: https://olm.vn/hoi-dap/detail/99503384500.html
Thông tin đến bạn!

23 tháng 10 2020

Áp dụng bất đẳng thức Cauchy–Schwarz dạng Engel ta có :

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{\left(1+1\right)^2}{x^2+xy+y^2+xy}=\frac{4}{\left(x+y\right)^2}\)

Cần chỉ ra \(\frac{4}{\left(x+y\right)^2}\ge4\)

Ta có : \(x+y\le1\)

=> \(\left(x+y\right)^2\le1\)

=> \(\frac{1}{\left(x+y\right)^2}\ge1\)( nghịch đảo )

=> \(\frac{4}{\left(x+y\right)^2}\ge4\)( nhân 4 vào cả hai vế )

=> đpcm

Đẳng thức xảy ra <=> x = y = 1/2

1 tháng 11 2019

Sao đã có x,y>0 lại có x+y=0 vậy bạn

23 tháng 2 2020

a) Rút gọn :

Ta có : \(A=\frac{y-x}{xy}:\left[\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x+y\right)^2-2x^2y-x^2\left(x^2-y^2\right)}{\left(x^2-y^2\right)^2}\right]\)

\(=\frac{y-x}{xy}:\left[\frac{y^2\left(x^2+2xy+y^2\right)-2x^2y-x^4+x^2y^2}{\left(x^2-y^2\right)^2}\right]\)

...

23 tháng 2 2020

 ミ★ Đạt ★彡: sao bạn rút gọn gì vậy @@?

4 tháng 12 2017

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2+2xy+y^2)=49xy

=>12(x+y)^2=49xy

=>(x+y)^2=49xy/12 (1)

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2-2xy+y^2)=xy

=>12(x-y)^2=xy

=>(x-y)^2=xy/12 (2)

Từ (1) và (2) suy ra :

(x-y)^2/(x+y)^2=1/49

Vì x<y<0 nên x-y/x=y=-1/7

Tick cho mik nhé thanghoa

đăng lên làm j z