K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

Ta có:\(x+y=1\)\(\Rightarrow x=1-y\)

Khi đó: \(P=\left(1-y\right)^3+y^3+\left(1-y\right)y\)

               \(=1-3y+3y^2-y^3+y^3+y-y^2\)

                \(=2y^2-2y+1\)

                 \(=2\left(y^2-y+\frac{1}{4}\right)-\frac{1}{2}+1\)

                  \(=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

30 tháng 7 2016

Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)

Suy ra \(P\ge10\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P = 10 khi x = y = 1/2

20 tháng 7 2017

Suy ra P≥10

Dấu "=" xảy ra khi và chỉ khi {

x+y=1
x=y

⇔x=y=12 

Vậy Min P = 10 khi x = y = 1/2

12 tháng 5 2017

A=4 

tk đi mình gửi kq cho

12 tháng 5 2017

Ta có:

\(\frac{1}{2}=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\)

\(\Rightarrow A=xy\ge4\) 

Dấu = xảy ra khi x = y = 2 

6 tháng 8 2016

mk không biết đề thêm đk \(x+y\le1\) làm j

Vì x,y>0 nên theo bđt Cô-Si:

\(P=\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

=>P\(\ge\) 2

=>MinP=2

Dấu "=" xảy ra \(< =>x=y\)

Vậy..........