Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)
\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A
\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
Ta có \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Vì x>y nên \(x-y\ne0\)\(\Rightarrow x-3y=0\Rightarrow x=3y\)
A= \(\frac{2x+5y}{x-2y}=\frac{11y}{y}=11\)
\(x^2+3y^2=4xy\)
\(x^2+4y^2-y^2-4xy=0\)
\(\left(x-2y\right)^2-y^2=0\)
\(\left(x-3y\right)\left(x-y\right)=0\)
=> x=3y hoặc x=y
Mà ta có x>y>0 => Trường hợp x=y loại
x=3y(Nhận)
Thay x=3y vào biểu thức ta có:
P=\(\frac{2x+5y}{x-2y}=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
ta co x2+3y2=4xy suy ra x2+3y2-4xy=0 suy ra x2-xy-3xy+3y2=0 suy ra x(x-y)-3y(x-y)=0 suy ra (x-3y)(x-y)=0
với x-y=0 suy ra x=y mà theo đề bài x>y>0 suy ra x-3y=0 suy ra x=3y thay vào P là xong
Ban coi co dung khong nha
ta có 2x2+2y2=5xy
=>2(x+y)2=9xy và 2(x-y)2=xy
M2=\(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}=\frac{9xy}{xy}=9\)
vậy M=3 hoặc M=-3
Ta dùng phương pháp tách đa thức thành nhân tử ta được
=> x+y=2x2+2y2=2(x2+y2)=9xy
=> x-y=2x2-2y2=2(x2-y2)=xy=1xy=xy
=>M=(x+y)2/(x-y)2=9xy:xy=9
Nên M= cộng trừ căn bậc 2 của 9
a \(=9x^2-6x+1+2012\)
\(=\left(3x-1\right)^2+2012\)
\(=200000^2+2012\)
b: \(=2014^2-2\cdot2014\cdot1014+1014^2\)
\(=\left(2014-1014\right)^2=1000^2=10^6\)
c: \(x^2+3y^2=4xy\)
=>x^2-4xy+3y^2=0
=>(x-y)*(x-3y)=0
=>x=y hoặc x=3y
KHi x=y thì \(C=\dfrac{2x+2013x}{x-2x}=-2015\)
Khi x=3y thì \(C=\dfrac{6y+2013y}{3y-2y}=2019\)
\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)
\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)
\(\Leftrightarrow1+2+3+4+..+x=15\)
\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)
\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)
Vậy x=5
Bài 2:
Bậc của đơn thức là 2+5+3=10
Bài 3:
\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)
+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành
\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+)TH2: \(x< \frac{1}{4}\) thì pt trở thành
\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)
Vậy x={-9/4;11/4}
Giải:
Ta có: \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\Leftrightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Mà \(x>y>0\Leftrightarrow x-y>0\)
Do đó \(x-3y=0\Leftrightarrow x=3y\)
Thay vào \(\Rightarrow A=\frac{2x+5y}{x-2y}=\frac{6y+5y}{3y-2y}=\frac{11y}{y}=11\)