K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)=1+\frac{x}{y}+1+\frac{y}{x}=2+\frac{x}{y}+\frac{y}{x}\)

Áp dụng BĐT cô si ,ta có:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x\cdot y}{y\cdot x}}=2\)

Vậy ta được đpcm

ta có:

\(a+\frac{1}{a}-2=\left(\sqrt{a}\right)^2+\left(\frac{1}{\sqrt{a}}\right)^2-2\sqrt{a\cdot\frac{1}{a}}=\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)^2\ge0\Rightarrow a+\frac{1}{a}\ge2\)

Vì a và 1/a cùng dấu nên 2 căn (a*1/a) lớn hơn 0 nha 

4 tháng 4 2015

Câu a) 

Ta có a + b \(\ge\)1 => a \(\ge\) 1 - b

Nên a2 + b2 \(\ge\) (1 - b)2 + b2 = 2b2 - 2b + 1 = 2(b2 - 2b.1/2 + 1/4 + 1/2) = 2(b - 1/2)2 + 1 \(\ge\) 1

Câu b) Áp dụng BĐT Bunhiacopxki ta có

(x + y)2 = (1.x + 1.y)2 \(\le\) (12 + 12)(x2 + y2) = 2.1 = 2

Dấu "=" xảy ra <=> x = y

4 tháng 4 2015

câu1 : cần sửa lại là A + B2 \(\ge\frac{1}{2}\)

Ta chứng minh được : (A+B)2 \(\le2.\left(A^2+B^2\right)\) (*)

<=> A + B + 2A.B \(\le\) 2. (A + B2)

<=> 0 \(\le\) A + B - 2.A.B <=> 0 \(\le\) (A-B)2 luôn đúng => (*) đúng

b) Áp sung câu a => (x+y)2 \(\le\)2.(x2 + y2) = 2 => đpcm

7 tháng 4 2017

Câu hỏi của thanh ngọc - Toán lớp 9 | Học trực tuyến