Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)
bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
Ta có:\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)< \left(x+y\right)\left(x^2-y^2\right)\)
\(\Leftrightarrow x^3+xy^2-yx^2-y^3< x^3+x^2y-y^2x-y^3\)
\(\Leftrightarrow xy^2-yx^2< x^2y-y^2x\)
\(\Rightarrow2xy^2< 2yx^2\)
\(\Rightarrow y< x\)(luôn đúng)
Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
\(\Leftrightarrow\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)
\(\Leftrightarrow\frac{\left(x^2-y^2\right)\left(x+y\right)-\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(x+y\right)^2-\left(x-y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(x^2+y^2+2xy-x^2-y^2\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)
\(\Leftrightarrow\frac{\left(x-y\right)2xy}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( luôn đúng vì x>y>0)
\(\Rightarrow\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)
đpcm
a/ PT <=> x + 27 = y(x -3)
<=> \(\frac{27+x}{x-3}=y\)
<=> \(1+\frac{30}{x-3}=\:y\)
Vì y > 10 đồng thời x -3 phải là ước của 30 nên có nghiệm (x,y) = (9, 6; 13, 4; 18, 3; 33, 2)
b/ x2 + 27 = y2
<=> 27 = (y - x)(y + x)
Tới đây thì đơn giản rồi bạn làm tiếp đi
1. \(a< b\Leftrightarrow2a< 2b\Leftrightarrow2a+1< 2b+1\)
\(a< b\Leftrightarrow-3a>-3b\Leftrightarrow-3a>-3b-1\)
2.\(a>b>0\Leftrightarrow a.\frac{1}{ab}>b.\frac{1}{ab}\Leftrightarrow\frac{1}{b}>\frac{1}{a}\Leftrightarrow\frac{1}{a}< \frac{1}{b}\)
Do \(x>y>0\) nên \(x+y\ne0\).Theo tính chất cơ bản của phân thức ta có :
\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) \(\left(1\right).\)
Mặt khác , do \(x,y>0\) nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) \(\left(2\right).\)
Từ \(\left(1\right),\left(2\right)\) \(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\).
\(\text{bđt }\Leftrightarrow\frac{1}{x+y}< \frac{x+y}{x^2+y^2}\Leftrightarrow x^2+y^2< \left(x+y\right)^2\Leftrightarrow2xy>0\)
bđt cuối đúng, nên bđt đầu đúng.