K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

cộng cả 2 vế của 3 đẳng thức cùng chiều ta có: x + y - z + x - y + z + -x + y + z = a - b + b - c + c - a

                                                                          =>(x + x - x ) + (y - y + y) + (z + z - z) = 0

                                                                          => x + y + z =0 (đpcm)

9 tháng 12 2018

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bxz-cyx}{ax}=\frac{cxy-azy}{by}=\frac{ayz-bxz}{cz}=\frac{bxz-cxy+cyz-azy+ayz-bxz}{ax+by+cz}=0\)

\(\frac{bz-cy}{a}=0\Rightarrow bz=cy\Rightarrow\frac{b}{y}=\frac{c}{z}\)

\(\frac{cx-az}{b}=0\Rightarrow cx=az\Rightarrow\frac{c}{z}=\frac{a}{x}\)

\(\frac{ay-bx}{c}=0\Rightarrow ay=bx\Rightarrow\frac{a}{x}=\frac{b}{y}\)

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)\)

6 tháng 12 2019

\(\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right).\)

Chúc bạn học tốt!

6 tháng 12 2019

eoeoyeuleuleuhihahahahiuhiuhihihehengaingungvui

Vì bz-cy/a=cx-az/b=ay-bx/c 

=> a(bz-cy)/a^2=b(cx-az)/b^2=c(ay-bx)/c^2 

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2 

theo tính chất của dãy tỉ số bằng nhau : 

=> abz-acy/a^2=bcx=baz/b^2=cay-cbx/c^2=a^2+... 

= 0/a^2+b^2+c^2=0 

vì bz-cy/a=0=>bz=cy=>y/b=z/c (1) 

vì cx-az/b=0=>cx=az=>x/a=z/c (2) 

từ (1) và (2) => x/a=y/b=z/c

t i c k nhé!! 4645767856875897696890806895789568467856

20 tháng 2 2018

Cộng 3 vế pt ta được:

\(x+y-z+x-y+z-x-y+z=0\Leftrightarrow x+y+z=0\)

18 tháng 11 2019

\(\text{Đặt }\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)

Khi đó : \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\left(1\right);\)

\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{k\left(a+b+c\right)}=\frac{a+b+c}{k}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^2}{x}+\frac{b^2}{y}=\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\left(\text{đpcm}\right)\)

18 tháng 11 2019

hình như bạn ghi sai đề rồi kìa