K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

Áp dụng bđt Cauchy-Schwarz và AM-GM:

\(x^4+y^4+z^4\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3}\ge\dfrac{\left(xy+yz+xz\right)^2}{3}=\dfrac{1}{3}\)

14 tháng 8 2017

Ta chứng minh được

\(a^2+b^2+c^2\)\(\dfrac{\left(a+b+c\right)^2}{3}\)

A=\(x^4+y^4+z^4\)\(x^2y^2+y^2z^2+z^2x^2\)\(\dfrac{\left(xy+yz+zx\right)^2}{3}=\dfrac{1}{3}\)

=>\(x^4+y^4+z^4\)\(\dfrac{1}{3}\left(đpcm\right)\)

Chúc Bạn Học Tốt

NV
3 tháng 3 2019

\(\left\{{}\begin{matrix}\left|x\right|\ge3\\\left|y\right|\ge3\\\left|z\right|\ge3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|\dfrac{1}{x}\right|\le\dfrac{1}{3}\\\left|\dfrac{1}{y}\right|\le\dfrac{1}{3}\\\left|\dfrac{1}{z}\right|\le\dfrac{1}{3}\end{matrix}\right.\)

\(\left|A\right|=\left|\dfrac{xy+yz+xz}{xyz}\right|=\left|\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right|\le\left|\dfrac{1}{x}\right|+\left|\dfrac{1}{y}\right|+\left|\dfrac{1}{z}\right|\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)

\(\Rightarrow A\le\left|A\right|\le1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=3\)

16 tháng 10 2017

Đang tl thì cái quảng cáo nở ra, bấm Đồng ý ở chỗ nhập Công thức thì mất sạch cả 2 bài, tiếc quá, thôi ko làm nữa

21 tháng 2

Bài 1:

 \(\dfrac{x-1000}{24}\) + \(\dfrac{x-998}{26}\) + \(\dfrac{x-996}{28}\) = 3

 \(\dfrac{x-1000}{24}\) + \(\dfrac{x-998}{26}\) + \(\dfrac{x-996}{28}\) - 3 = 0

(\(\dfrac{x-1000}{24}\) - 1) + (\(\dfrac{x-998}{26}\) - 1) + (\(\dfrac{x-996}{28}\) - 1) =0

\(\dfrac{x-1024}{24}\) + \(\dfrac{x-2024}{26}\) + \(\dfrac{x-2024}{28}\) = 0

(\(x\) - 2024).(\(\dfrac{1}{24}\) + \(\dfrac{1}{26}\) + \(\dfrac{1}{28}\)) = 0

\(x-2024\) =  0

\(x=2024\)

Vậy \(x=2024\)

20 tháng 11 2021

\(\dfrac{xy}{x+y}=\dfrac{yz}{y+z}=\dfrac{zx}{z+x}\\ \Rightarrow\dfrac{x+y}{xy}=\dfrac{y+z}{yz}=\dfrac{z+x}{zx}\\ \Rightarrow\dfrac{1}{y}+\dfrac{1}{x}=\dfrac{1}{z}+\dfrac{1}{y}=\dfrac{1}{x}+\dfrac{1}{z}\\ \Rightarrow\dfrac{1}{x}=\dfrac{1}{y}=\dfrac{1}{z}\\ \Rightarrow x=y=z\)

\(\Rightarrow P=\dfrac{xy+yz+zx}{x^2+y^2+z^2}=\dfrac{x^2+x^2+x^2}{x^2+x^2+x^2}=1\)

20 tháng 11 2021

Cảm ơn anh rất nhìu

27 tháng 10 2017

nhanh lên chiều nay tui nộp rùi

30 tháng 10 2017

= \(\dfrac{\sqrt{xy}-1+\sqrt{yz}-3+\sqrt{zx}-5}{3+9+6}\) = \(\dfrac{11-\left(1+3+5\right)}{18}\)=\(\dfrac{1}{9}\) haha

22 tháng 11 2022

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{xy}{4}=\dfrac{yz}{6}=\dfrac{xz}{10}=\dfrac{xy+yz+xz}{4+6+10}=\dfrac{60}{20}=3\)

=>xy=12; yz=18; xz=30

=>xyz=căn(12*18*30)=36căn 5

=>\(z=3\sqrt{5};x=2\sqrt{5};y=\dfrac{6\sqrt{5}}{5}\)

31 tháng 10 2021

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x-1}{4}=\frac{y-2}{3}=\frac{2x-2+5y-10}{2.4+5.3}=\frac{81-12}{23}=\frac{69}{23}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{4}=2\Rightarrow x=9\\\frac{y-2}{3}=2\Rightarrow y=8\end{cases}}\)

Vậy ... 

31 tháng 10 2021

cậu 1 mik chưa nghĩ ra , xin lỗi bạn nhiều nha 

câu 2 :

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k,y=3k;z=4k\) 

Ta có: xy+yz+zx=104

=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104

=> 6k2 + 12k2 + 8k2 = 104

=> k2(6+12+8) = 104

=> 26k2  = 104

=> k2 = 4

=> k = ±2