K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

gt <=> \(\left(x+\sqrt{x^2+2}\right)\left(\left(y-1\right)+\sqrt{\left(y-1\right)^2+2}\right)=2\)

Đặt \(x=a;y-1=b\)

=> gt trở thành: \(\left(a+\sqrt{a^2+2}\right)\left(b+\sqrt{b^2+2}\right)=2\)    (1)

Lần lượt có: \(\left(\sqrt{a^2+2}+a\right)\left(\sqrt{a^2+2}-a\right)=2\)    (2) 

Và \(\left(\sqrt{b^2+2}+b\right)\left(\sqrt{b^2+2}-b\right)=2\)    (3)

TỪ (1); (2); (3) => \(\hept{\begin{cases}\left(\sqrt{a^2+2}-a\right)=\sqrt{b^2+2}+b\\\sqrt{b^2+2}-b=\sqrt{a^2+2}+a\end{cases}}\)

Ta cộng từng vế của 2 pt trên lại, ta được: 

=> \(\sqrt{a^2+2}+\sqrt{b^2+2}-\left(a+b\right)=\sqrt{a^2+2}+\sqrt{b^2+2}+\left(a+b\right)\)

<=> \(2\left(a+b\right)=0\)

<=> \(a+b=0\)

Thay lại: a = x; b = y - 1

=> \(x+y-1=0\)

<=> \(x+y=1\)

=> \(x^3+y^3+3xy=x^3+y^3+3xy.1=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)^3=1^3=1\)

Vậy \(x^3+y^3+3xy=1\)

TA CÓ ĐPCM

DD
23 tháng 6 2021

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+3\left(x+y\right)^2-6xy+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+y\right)^2+x+y+2\right)-3xy\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy+x+y+2-3xy\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)

\(\Leftrightarrow x+y+2=0\)

\(\Leftrightarrow x+y=-2\)

\(M=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{-2}=-2\)

Dấu \(=\)khi \(x=y=-1\).

12 tháng 10 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu x ≥ 0, y  ≥  0, z  ≥  0 thì:

x + y + z  ≥  0

x - y 2 + y - z 2 + z - x 2 ≥ 0

Suy ra:

x 3 + y 3 + z 3 - 3 x y z ≥ 0 ⇔ x 3 + y 3 + z 3 ≥ 3 x y z

Hay:  x 3 + y 3 + z 3 3 ≥ x y z

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:

$A=(x+y)(x^2-xy+y^2)+x^2+y^2=2(x^2-xy+y^2)+x^2+y^2=2(x^2+y^2)+(x-y)^2$

$\geq 2(x^2+y^2)=(1^2+1^2)(x^2+y^2)\geq (x+y)^2=2^2=4$ (theo BĐT Bunhiacopxky)

Vậy $A_{\min}=4$. Giá trị này đạt tại $x=y=1$

10 tháng 1 2021

Ta có: \(x^3-y^3=3x-3y\Leftrightarrow x^2+xy+y^2=3\) (Do \(x\neq y\)).

Tương tự: \(y^2+yz+z^2=3;z^2+zx+x^2=3\).

Cộng vế với vế ta có: \(2\left(x^2+y^2+z^2\right)+xy+yz+zx=9\)

\(\Leftrightarrow\dfrac{3\left(x^2+y^2+z^2\right)}{2}+\dfrac{\left(x+y+z\right)^2}{2}=9\).

Mặt khác, từ đó ta cũng có: \(\left(x^2+xy+y^2\right)-\left(y^2+yz+z^2\right)=0\Leftrightarrow\left(x+y+z\right)\left(x-z\right)=0\Leftrightarrow x+y+z=0\).

Do đó \(x^2+y^2+z^2=6\left(đpcm\right)\).

NV
23 tháng 7 2021

Đề là: \(P=x^3+y^3-\dfrac{x^2+y^2}{\left(x-1\right)\left(y-1\right)}\)

Hay \(P=\dfrac{x^3+y^3-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\) 

Cái nào em nhỉ?

23 tháng 7 2021

cái ở dưới ạ

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

Nếu $y=0$ thì $x^2=1$. Khi đó $P=2$

Nếu $y\neq 0$. Đặt $\frac{x}{y}=t$ thì:

$P=\frac{2(x^2+6xy)}{x^2+2xy+3y^2}=\frac{2(t^2+6t)}{t^2+2t+3}$

$P(t^2+2t+3)=2t^2+12t$

$t^2(P-2)+2(P-6)t+3P=0$

$\Delta'=(P-6)^2-3P(P-2)\geq 0$

$\Leftrightarrow (P-3)(P+6)\leq 0$

$\Leftrightarrow -6\leq P\leq 3$ nên $P_{\max}=3$
Vậy $P_{\max}=3$
Giá trị này đạt tại $(x,y)=(\frac{3}{\sqrt{10}}; \frac{1}{\sqrt{10}})$ hoặc $(\frac{-3}{\sqrt{10}}; \frac{-1}{\sqrt{10}})$

 

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

(2) có nghiệm khi Delta' lớn hơn hoặc bằng 0

Hơn nữa, công thức Delta' của em bị nhầm.

19 tháng 11 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vế trái bằng vế phải nên đẳng thức được chứng minh.

Nếu a ≥ 0, b  ≥  0, c  ≥  0 thì :

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

4 tháng 3 2018

CMR: \(\frac{1}{x}+\frac{1}{y}\le2\)  biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0

8 tháng 3 2018

tôi quên mât CMR: 1/x+1/y<=-2