Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho mk sửa đề nha: ( câu đầu tiên ) O nằm trên tia đối tia AB.
Bạn tự vẽ hình!
a, Vì O nằm trên tia đối tia AB => A nằm giữa O và B
=> OA + AB = OB
=> OA < OB
b, Ba điểm O, M và N thì điểm N nằm giữa O và M vì OA < OB
\(\Rightarrow\frac{OA}{2}< \frac{OB}{2}\Rightarrow ON< OM\) => N nằm giữa O và M.
c, Ta thấy: \(MN=OM-ON\)
\(=\frac{OB}{2}-\frac{OA}{2}=\frac{OB-OA}{2}=\frac{AB}{2}\)
=> Độ dài MN không phụ thuộc vào điểm O.
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
Giả sử ay - bx chia hết cho x+y
Mà ax-by chia hết cho x+y
=>(ax-by)+(ay-bx) chia hết cho x+y
=> ax-by+ay-bx chia hết cho x+y
=> (ax+ay)-(bx+by) chia hết cho x+y
=> a(x+y)-b(x+y) chia hết cho x+y
=> (a-b)(x+y) chia hết cho x+y (đúng)
=> giả sử đúng
Vậy ay-bx chia hết cho x+y
\(Có:6x+3chc2x-1\)
\(\Rightarrow2.3x-3+6chc2x-1\)
\(\Rightarrow3\left(2x-1\right)+6chc2x-1\)
\(mà3\left(2x-1\right)chc2x-1\)
\(\Rightarrow6chc2x-1\Rightarrow2x-1\inƯ_{\left(6\right)}\)
\(\Rightarrow2x-1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
\(mà2x-1lẻ\)
\(\Rightarrow2x-1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{1;0;2;-1\right\}\)
tick nha