K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

ko hỉu câu hỏi . viết hẳn hoi mình mới à dc batngo

 

11 tháng 12 2016

đề thầy ra thế mà

 

7 tháng 6 2018

Ta có :

3x + y chia hết cho 17

Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)

Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh.

6 tháng 3 2020

Đặt \(A=6x+10y+z\)\(B=3x-2y+4z\)

Ta có : \(A+5B=\left(6x+10y+z\right)+5\left(3x-2y+4z\right)\)

\(=21x+21z=21\left(x+z\right)⋮21\forall x,z\inℤ\)

\(\Rightarrow A+5B⋮21\)(1)

+) Nếu \(A⋮21\) thì từ (1) \(\Rightarrow5B⋮21\Rightarrow B⋮21\) ( Do \(5⋮̸21\) )

+) Nếu \(B⋮21\Rightarrow5B⋮21\) thì từ (1) \(\Rightarrow A⋮21\)

Vậy ta có điều phải chứng minh.

6 tháng 3 2020

Vì \(6x+10y+z⋮21\)\(\Leftrightarrow4.\left(6x+10y+z\right)⋮21\)\(\Leftrightarrow24x+40y+4z⋮21\)

Ta có: \(\left(24x+40y+4z\right)-\left(3x-2y+4z\right)\)

      \(=24x+40y+4z-3x+2y-4z\)

      \(=\left(24x-3x\right)+\left(40y+2y\right)+\left(4z-4z\right)\)

      \(=21x+42y=21.\left(x+2y\right)⋮21\)

  mà \(24x+40y+4z⋮21\)\(\Rightarrow3x-2y+4z⋮21\)

Điều ngược lại:

Vì \(3x-2y+4z⋮21\)\(\Leftrightarrow5.\left(3x-2y+4z\right)⋮21\)\(\Leftrightarrow15x-10y+20z⋮21\)

Ta có: \(\left(15x-10y+20z\right)+\left(6x+10y+z\right)\)

      \(=15x-10y+20z+6x+10y+z\)

      \(=\left(15x+6x\right)-\left(10y-10y\right)+\left(20z+z\right)\)

      \(=21x+21z=21.\left(x+z\right)⋮21\)

  mà \(15x-10y+20z⋮21\)\(\Rightarrow6x+10y+z⋮21\)

Vậy \(6x+10y+z⋮21\Leftrightarrow3x-2y+4z⋮21\)

21 tháng 9 2016

Ta có: x - 5y chia hết cho 17 

<=> 10.(x - 5y) chia hết cho 17

=> 10x - 50y chia hết cho 17

Vì (10x - 50y) - (10x + y) = -51y 

Mà -51y chia hết cho 17

Nên 10x + y chia hết cho 17

\(\dfrac{x}{5}=\dfrac{y}{-16}=\dfrac{z}{17}\)

mà 3x-2y=47

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{-16}=\dfrac{z}{17}=\dfrac{3x-2y}{3\cdot5-2\cdot\left(-16\right)}=\dfrac{47}{47}=1\)

=>\(x=5\cdot1=5;y=-16\cdot1=-16;z=17\cdot1=17\)

5 tháng 12 2023

a) 3x = 7y ⇒ x/7 = y/3

⇒ x/7 = 2y/6

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/7 = 2y/6 = (x - 2y)/(7 - 6) = 2/1 = 2

x/7 = 2 ⇒ x = 2.7 = 14

y/3 = 2 ⇒ y = 2.3 = 6

Vậy x = 14; y = 6

b) x/2 = y/3 ⇒ x/6 = y/9 (1)

x/3 = z/4 ⇒ x/6 = z/8 (2)

Từ (1) và (2) ⇒ x/6 = y/9 = z/8

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/6 = y/9 = z/8 = (x + y - z)/(6 + 9 - 8) = 7/7 = 1

x/6 = 1 ⇒ x = 1.6 = 6

y/9 = 1 ⇒ y = 1.9 = 9

z/8 = 1 ⇒ z = 1.8 = 8

Vậy x = 6; y = 9; z = 8

c) x/2 = y/3 ⇒ x/10 = y/15 ⇒ 2x/20 = y/15 (3)

y/5 = z/4 ⇒ y/15 = z/12 (4)

Từ (3) và (4) ⇒ 2x/20 = y/15 = z/12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/20 = y/15 = z/12 = (2x - y + z)/(20 - 15 + 12) = 17/17 = 1

2x/20 = 1 ⇒ x = 1.20 : 2 = 10

y/15 = 1 ⇒ y = 1.15 = 15

z/12 = 1 ⇒ z = 1.12 = 12

Vậy x = 10; y = 15; z = 12

20 tháng 3 2017

\(\hept{\begin{cases}\left(x-y\right)⋮17\Rightarrow\left(x-y\right)=17.p...voi...P\in Z\\A-B=x^2y-xy^2=xy\left(x-y\right)=17.p.\left(xy\right)⋮17\Rightarrow dccm\Leftrightarrow dpcm\end{cases}}\)

7 tháng 11 2021

A