K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Vì \(\hept{\begin{cases}\left(x+3y-6\right)^{2006}\ge0\\\left|2x-y-5\right|\ge0\end{cases}\Leftrightarrow\left(x+3y-6\right)^{2006}+\left|2x-y-5\right|\ge0}\)

Theo đề bài:

 \(\left(x+3y-6\right)^{2006}+\left|2x-y-5\right|=0\Leftrightarrow\left(x+3y-6\right)^{2006}=\left|2x-y-5\right|=0\)

\(\Leftrightarrow x+3y-6=2x-y-5=0\)

Giải cái bên trên ra bạn sẽ được x=3 và y=1 => x+y=3+1=4

Vậy ...

16 tháng 5 2017

bạn giải thích giúp mình chỗ tính ra x=3; y=1 với ạ. mình k hiểu chỗ đó hic

22 tháng 9 2016

ĐÃ BIẾT RỒI CÒN HỎI

9 tháng 9 2016

có ai rảnh ko trả lời giúp mk vs mk đang vội

9 tháng 12 2016

\(\left(x+3y-6\right)^{2004}+\left|2x-y-5\right|=0\)

\(\Rightarrow\begin{cases}x+3y-6=0\Rightarrow x=6-3y\Rightarrow2x=12-6y\\2x-y-5=0\Rightarrow2x=y+5\end{cases}\)

\(\Rightarrow12-6y=y+5\Rightarrow y=1\Rightarrow x=3\Rightarrow x+y=1+3=4\)

Chúc bạn học tốt :)

9 tháng 12 2016

giúp bài cuối sáng nay

2x - y-5 = 0 => x =(y+5)/2 (1)

x + 3y -6 = 0 => thay (1) có: y = 1

thay y=1 vào (1) có x = 3

vây x+y = 1+3 = 4

6 tháng 10 2016

Ta có :

\(\begin{cases}\left(x+3y-6\right)^{2006}\ge0\\\left|2x-y-5\right|\ge0\end{cases}\)

\(\Rightarrow\begin{cases}x+3y-6=0\\2x-y-5=0\end{cases}\)

\(\Rightarrow\begin{cases}x=6-3y\\2x=y+5\end{cases}\)

\(\Rightarrow\begin{cases}2x=12-6y\\2x=y+5\end{cases}\)

\(\Rightarrow12-6y=y+5\)

\(\Rightarrow y=1\)

\(\Rightarrow x=6\)

-> x + y = 7

15 tháng 3 2017

\(2x^2+3y^2-5xy-x+3y-4=0\\ \) 

Chả hiểu,mình mới học lớp 5 à

NV
14 tháng 4 2022

Với mọi a;b;c không âm ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

Áp dụng:

a.

\(VT\le\sqrt{3\left(x+7+y+7+z+7\right)}=\sqrt{3\left(6+21\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)

b.

\(VT\le\sqrt{3\left(3x+2y+3y+2z+3z+2x\right)}=\sqrt{15\left(x+y+z\right)}=\sqrt{15.6}=3\sqrt{10}\)

Dấu "=" xảy ra khi \(x=y=z=2\)

c.

\(VT\le\sqrt{3\left(2x+5+2y+5+2z+5\right)}=\sqrt{3\left(2.6+15\right)}=9\)

Dấu "=" xảy ra khi \(x=y=z=2\)