K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

23 tháng 12 2016

h mk di minh tra loi noi that

24 tháng 12 2016

đặt t=x+y

x^2 +2xy+6x+6y+2y^2+8=0

x^2+2xy+y^2+6(x+y)+8= -y^2

(x+y)^2 + 6(x+y)+8 = -y^2

t^2 +6t +8= -y^2

(t+2)(t+4) = -y^2

do y^2 >=0 với mọi y

-y^2 <=0 với mọi y

t^2+6t+8<=0

(t+2)(t+4)<=0

* Trường hợp 1:   t+2<=0 và t+4>=0        (1)

t<=-2 và t>=4

* trường hợp 2:  t+2>=0 và t+4<=0           (2)

t>= -2 và t<= -4   ( vô nghiệm)

 Từ (1), (2) ta có:

-4<= t <=-2 

-4 <= x+y <= -2

-4 + 2016 <= x+y+ 2016 <= -2 +2016

2012 <= x+y +2016 <= 2014

Bmin= 2012

Bmax= 2014

 *Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0

thì x=-4 và y=0

* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0

thì x=-2 và y=0

vậy Bmin= 2012 khi (x,y) = (-4, 0)

Bmax= 2014 khi (x,y)= (-2,0)