Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
do x,y bình đẳng như nhau giả sử \(x\ge y\)
Ta có:x2018+y2018=2
mà \(x^{2018}\ge0,y^{2018}\ge0\)
\(\Rightarrow x^{2018}+y^{2018}\ge0\)
Do \(x^{2018}+y^{2018}=2=1+1=2+0\)(do x lớn hơn hoặc bằng y)
Với \(x^{2018}+y^{2018}=1+1\)\(\Rightarrow x^{2018}=y^{2018}=1\)
\(\Rightarrow x=y=1;x=y=-1;x=1,y=-1\)(do x lớn hơn hoặc bằng y)
\(\Rightarrow Q=1+1=2\)\(\left(1\right)\)
Với \(x^{2018}+y^{2018}=2+0\)\(\Rightarrow x^{2018}=2\)(vô lý vỳ x,y thuộc Z)
Vậy........................
1/ Điều kiện: x>=2009.
Ta có: \(y=x-2\sqrt{x-2009}=\left(x-2009\right)-2\sqrt{x-2009}+1+2008.\)
=> \(y=\left(\sqrt{x-2009}-1\right)^2+2008\)
Do \(\left(\sqrt{x-2009}-1\right)^2\ge0\) => \(y=\left(\sqrt{x-2009}-1\right)^2+2008\ge2008\)(Với mọi x>=2009)
GTNN của y là: y=2008
Đạt được khi \(\left(\sqrt{x-2009}-1\right)^2=0\) <=> x-2009=1 <=> x=2010
2/ Ta có: x+y=6 => y=6-x. Đặt A=x2y
=> A=x2y=x2(6-x)=6x2-x3 = x(6x-x2)=x(9-9+6x-x2)=x[9-(x2-6x+9)] =x[9-(x-3)2]
Do x>0 và (x-3)2 >=0 => A đạt giá trị lớn nhất khi (x-3)2=0 <=> x=3
=> GTLN của A=x2y là 3.9=27 Đạt được khi x=y=3
Câu 2-Ta có x^2+y^2=5
(x+y)^2-2xy=5
Đặt x+y=S. xy=P
S^2-2P=5
P=(S^2-5)/2
Ta lại có P=x^3+y^3=(x+y)^3-3xy(x+y)=S^3-3SP=S^3-3S(S^2-5)/2
Rùi tự tính
Câu1
Ta có P<=a+a/4+b+a/12+b/3+4c/3 (theo bdt cô sy)
=> P<=4/3(a+b+c)=4/3
Vậy Max p =4/3 khi a=4b=16c
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
1)Đặt \(\sqrt{x-2014}=t\left(t\ge0;x\ge2014\right)\Rightarrow x=t^2+2014\)
Ta có y = \(t^2+2014-2t=\left(t-1\right)^2+2013\ge2013\)
Vậy miny = 2013 khi t = 1 <=> x = 2015
2) CM BĐT : \(abc\le\frac{\left(a+b+c\right)^3}{27}\). ( với a ; b ;c >0 ) (1)
Áp dụng bđt cô si với ba số không âm ta có :
\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow\left(a+b+c\right)^3\ge27abc\Leftrightarrow abc\le\frac{\left(a+b+c\right)^3}{27}\)
Dấu '' = '' xảy ra khi a = b= c . BĐT đc chứng minh
Áp dụng BĐT (1) ta có :
\(x^2y=4\cdot\frac{1}{2}x\cdot\frac{1}{2}x\cdot y\le4\cdot\frac{\left(\frac{1}{2}x+\frac{1}{2}x+y\right)^3}{27}=4\cdot\frac{6^3}{27}=32\)
VẬy GTLN của x^2y là 32 khi \(\frac{1}{2}x=y\) và x + y = 6 <=> x = 4 và y = 2
\(x^2+2xy+7\left(x+y\right)+2y^2+10=0\)
=>\(\left(x+y\right)^2+7\left(x+y\right)+6,25+2,25\)=0
=>\(\left(\left(x+y\right)+3,5\right)^2-2,25=0\)
=>...
=>\(\left(x+y\right)=-4\)hoặc \(x+y=-2\)
=>Giá trị nhỏ nhất của S là
x+y+1=-4+1=-3
Giá trị lớn nhất của S là
x+y+1=-2+1=-1
Xin lỗi , Dòng thứ nhất có \(2y^2 \) mà sao đến dòng thứ 2 của bạn thì lại còn có \(y^2\) .